Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum
We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptot...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2021-01, Vol.11 (4), p.1511-1597, Article 1511 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1597 |
---|---|
container_issue | 4 |
container_start_page | 1511 |
container_title | Journal of spectral theory |
container_volume | 11 |
creator | Aptekarev, Alexander I. Denisov, Sergey A. Yattselev, Maxim L. |
description | We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality. |
doi_str_mv | 10.4171/jst/380 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A687498577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687498577</galeid><sourcerecordid>A687498577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-8b7b940432bad92dfebb6474bbe85bef4883b64055a5bfc5f9cfa83fc4a07a043</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWGrxK-TmadtsN7vJeivFvxS8KHhbkuykpO4mJRMP--2NVC_KHObx8n4TeIRcl2zJS1GuDphWlWRnZFY2DS8YZ9X5r67a90uyQDwwxrIj8tuMfDwrE7Sjo0rRGUAaPE0RstiDh6gS9FRPdOP3MACaQHHCBCPeUoXTeEwhOZMhS00Aa51x4BNS5XsKiFk7NVA8gknxc7wiF1YNCIufPSdv93ev28di9_LwtN3sCrNuRSqkFrrljFdrrfp23VvQuuGCaw2y1mC5lFU2WF2rWltT29ZYJStruGJCZW5Olqe7ezVA57wNKSqTp4fRmeDBuuxvGil4K2shMnBzAkwMiBFsd4xuVHHqStZ999rlXrvca04Wf5LGJZVc8PkLN_zLfwFm1327</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aptekarev, Alexander I. ; Denisov, Sergey A. ; Yattselev, Maxim L.</creator><creatorcontrib>Aptekarev, Alexander I. ; Denisov, Sergey A. ; Yattselev, Maxim L.</creatorcontrib><description>We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.</description><identifier>ISSN: 1664-039X</identifier><identifier>EISSN: 1664-0403</identifier><identifier>DOI: 10.4171/jst/380</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Mathematical research ; Matrices ; Trees (Graph theory)</subject><ispartof>Journal of spectral theory, 2021-01, Vol.11 (4), p.1511-1597, Article 1511</ispartof><rights>COPYRIGHT 2021 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-8b7b940432bad92dfebb6474bbe85bef4883b64055a5bfc5f9cfa83fc4a07a043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Aptekarev, Alexander I.</creatorcontrib><creatorcontrib>Denisov, Sergey A.</creatorcontrib><creatorcontrib>Yattselev, Maxim L.</creatorcontrib><title>Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum</title><title>Journal of spectral theory</title><description>We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.</description><subject>Mathematical research</subject><subject>Matrices</subject><subject>Trees (Graph theory)</subject><issn>1664-039X</issn><issn>1664-0403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxYMoWGrxK-TmadtsN7vJeivFvxS8KHhbkuykpO4mJRMP--2NVC_KHObx8n4TeIRcl2zJS1GuDphWlWRnZFY2DS8YZ9X5r67a90uyQDwwxrIj8tuMfDwrE7Sjo0rRGUAaPE0RstiDh6gS9FRPdOP3MACaQHHCBCPeUoXTeEwhOZMhS00Aa51x4BNS5XsKiFk7NVA8gknxc7wiF1YNCIufPSdv93ev28di9_LwtN3sCrNuRSqkFrrljFdrrfp23VvQuuGCaw2y1mC5lFU2WF2rWltT29ZYJStruGJCZW5Olqe7ezVA57wNKSqTp4fRmeDBuuxvGil4K2shMnBzAkwMiBFsd4xuVHHqStZ999rlXrvca04Wf5LGJZVc8PkLN_zLfwFm1327</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Aptekarev, Alexander I.</creator><creator>Denisov, Sergey A.</creator><creator>Yattselev, Maxim L.</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum</title><author>Aptekarev, Alexander I. ; Denisov, Sergey A. ; Yattselev, Maxim L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-8b7b940432bad92dfebb6474bbe85bef4883b64055a5bfc5f9cfa83fc4a07a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical research</topic><topic>Matrices</topic><topic>Trees (Graph theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aptekarev, Alexander I.</creatorcontrib><creatorcontrib>Denisov, Sergey A.</creatorcontrib><creatorcontrib>Yattselev, Maxim L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of spectral theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aptekarev, Alexander I.</au><au>Denisov, Sergey A.</au><au>Yattselev, Maxim L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum</atitle><jtitle>Journal of spectral theory</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>1511</spage><epage>1597</epage><pages>1511-1597</pages><artnum>1511</artnum><issn>1664-039X</issn><eissn>1664-0403</eissn><abstract>We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/jst/380</doi><tpages>87</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-039X |
ispartof | Journal of spectral theory, 2021-01, Vol.11 (4), p.1511-1597, Article 1511 |
issn | 1664-039X 1664-0403 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A687498577 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Mathematical research Matrices Trees (Graph theory) |
title | Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jacobi%20matrices%20on%20trees%20generated%20by%20Angelesco%20systems:%20asymptotics%20of%20coefficients%20and%20essential%20spectrum&rft.jtitle=Journal%20of%20spectral%20theory&rft.au=Aptekarev,%20Alexander%20I.&rft.date=2021-01-01&rft.volume=11&rft.issue=4&rft.spage=1511&rft.epage=1597&rft.pages=1511-1597&rft.artnum=1511&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171/jst/380&rft_dat=%3Cgale_cross%3EA687498577%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A687498577&rfr_iscdi=true |