Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum

We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spectral theory 2021-01, Vol.11 (4), p.1511-1597, Article 1511
Hauptverfasser: Aptekarev, Alexander I., Denisov, Sergey A., Yattselev, Maxim L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1597
container_issue 4
container_start_page 1511
container_title Journal of spectral theory
container_volume 11
creator Aptekarev, Alexander I.
Denisov, Sergey A.
Yattselev, Maxim L.
description We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.
doi_str_mv 10.4171/jst/380
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A687498577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A687498577</galeid><sourcerecordid>A687498577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-8b7b940432bad92dfebb6474bbe85bef4883b64055a5bfc5f9cfa83fc4a07a043</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWGrxK-TmadtsN7vJeivFvxS8KHhbkuykpO4mJRMP--2NVC_KHObx8n4TeIRcl2zJS1GuDphWlWRnZFY2DS8YZ9X5r67a90uyQDwwxrIj8tuMfDwrE7Sjo0rRGUAaPE0RstiDh6gS9FRPdOP3MACaQHHCBCPeUoXTeEwhOZMhS00Aa51x4BNS5XsKiFk7NVA8gknxc7wiF1YNCIufPSdv93ev28di9_LwtN3sCrNuRSqkFrrljFdrrfp23VvQuuGCaw2y1mC5lFU2WF2rWltT29ZYJStruGJCZW5Olqe7ezVA57wNKSqTp4fRmeDBuuxvGil4K2shMnBzAkwMiBFsd4xuVHHqStZ999rlXrvca04Wf5LGJZVc8PkLN_zLfwFm1327</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aptekarev, Alexander I. ; Denisov, Sergey A. ; Yattselev, Maxim L.</creator><creatorcontrib>Aptekarev, Alexander I. ; Denisov, Sergey A. ; Yattselev, Maxim L.</creatorcontrib><description>We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.</description><identifier>ISSN: 1664-039X</identifier><identifier>EISSN: 1664-0403</identifier><identifier>DOI: 10.4171/jst/380</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Mathematical research ; Matrices ; Trees (Graph theory)</subject><ispartof>Journal of spectral theory, 2021-01, Vol.11 (4), p.1511-1597, Article 1511</ispartof><rights>COPYRIGHT 2021 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-8b7b940432bad92dfebb6474bbe85bef4883b64055a5bfc5f9cfa83fc4a07a043</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Aptekarev, Alexander I.</creatorcontrib><creatorcontrib>Denisov, Sergey A.</creatorcontrib><creatorcontrib>Yattselev, Maxim L.</creatorcontrib><title>Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum</title><title>Journal of spectral theory</title><description>We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.</description><subject>Mathematical research</subject><subject>Matrices</subject><subject>Trees (Graph theory)</subject><issn>1664-039X</issn><issn>1664-0403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNplkE9LAzEQxYMoWGrxK-TmadtsN7vJeivFvxS8KHhbkuykpO4mJRMP--2NVC_KHObx8n4TeIRcl2zJS1GuDphWlWRnZFY2DS8YZ9X5r67a90uyQDwwxrIj8tuMfDwrE7Sjo0rRGUAaPE0RstiDh6gS9FRPdOP3MACaQHHCBCPeUoXTeEwhOZMhS00Aa51x4BNS5XsKiFk7NVA8gknxc7wiF1YNCIufPSdv93ev28di9_LwtN3sCrNuRSqkFrrljFdrrfp23VvQuuGCaw2y1mC5lFU2WF2rWltT29ZYJStruGJCZW5Olqe7ezVA57wNKSqTp4fRmeDBuuxvGil4K2shMnBzAkwMiBFsd4xuVHHqStZ999rlXrvca04Wf5LGJZVc8PkLN_zLfwFm1327</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Aptekarev, Alexander I.</creator><creator>Denisov, Sergey A.</creator><creator>Yattselev, Maxim L.</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum</title><author>Aptekarev, Alexander I. ; Denisov, Sergey A. ; Yattselev, Maxim L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-8b7b940432bad92dfebb6474bbe85bef4883b64055a5bfc5f9cfa83fc4a07a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical research</topic><topic>Matrices</topic><topic>Trees (Graph theory)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aptekarev, Alexander I.</creatorcontrib><creatorcontrib>Denisov, Sergey A.</creatorcontrib><creatorcontrib>Yattselev, Maxim L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of spectral theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aptekarev, Alexander I.</au><au>Denisov, Sergey A.</au><au>Yattselev, Maxim L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum</atitle><jtitle>Journal of spectral theory</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><spage>1511</spage><epage>1597</epage><pages>1511-1597</pages><artnum>1511</artnum><issn>1664-039X</issn><eissn>1664-0403</eissn><abstract>We continue studying the connection between Jacobi matrices defined on a tree and multiple orthogonal polynomials (MOPs) that was recently discovered. In this paper, we consider Angelesco systems formed by two analytic weights and obtain asymptotics of the recurrence coefficients and strong asymptotics of MOPs along all directions (including the marginal ones). These results are then applied to show that the essential spectrum of the related Jacobi matrix is the union of intervals of orthogonality.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/jst/380</doi><tpages>87</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-039X
ispartof Journal of spectral theory, 2021-01, Vol.11 (4), p.1511-1597, Article 1511
issn 1664-039X
1664-0403
language eng
recordid cdi_gale_infotracacademiconefile_A687498577
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Mathematical research
Matrices
Trees (Graph theory)
title Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jacobi%20matrices%20on%20trees%20generated%20by%20Angelesco%20systems:%20asymptotics%20of%20coefficients%20and%20essential%20spectrum&rft.jtitle=Journal%20of%20spectral%20theory&rft.au=Aptekarev,%20Alexander%20I.&rft.date=2021-01-01&rft.volume=11&rft.issue=4&rft.spage=1511&rft.epage=1597&rft.pages=1511-1597&rft.artnum=1511&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171/jst/380&rft_dat=%3Cgale_cross%3EA687498577%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A687498577&rfr_iscdi=true