On Various Moduli of Smoothness and K-Functionals
We present a survey of the results on the exact rates of approximation of functions by linear means of Fourier series and Fourier integrals. The corresponding K -functionals are expressed via the special moduli of smoothness.
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2020-12, Vol.72 (7), p.1131-1163 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1163 |
---|---|
container_issue | 7 |
container_start_page | 1131 |
container_title | Ukrainian mathematical journal |
container_volume | 72 |
creator | Trigub, R. M. |
description | We present a survey of the results on the exact rates of approximation of functions by linear means of Fourier series and Fourier integrals. The corresponding
K
-functionals are expressed via the special moduli of smoothness. |
doi_str_mv | 10.1007/s11253-020-01848-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A682076444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651512070</galeid><sourcerecordid>A651512070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-a925111cfd9d37c463a3168140c6d01610c61e7b1ac6ea47f87c53cfacb273e43</originalsourceid><addsrcrecordid>eNqN0MtOAyEYhmFiNLFWb8DV3AD1_4fTzLJprBo1XXjYEspAnaYFAzML715qXRvD4ksID4uXkGuEGQKom4xYC0ahBgrY8IbCCZmgUIy2TMlTMgHgSEXbinNykfMWoLBGTQiuQvVuUh_HXD3Hbtz1VfTVyz7G4SO4nCsTuuqRLsdghz4Gs8uX5MyXcVe_OyVvy9vXxT19Wt09LOZP1DLZDtS0tUBE67u2Y8pyyQxD2SAHKztAiWXRqTUaK53hyjfKCma9setaMcfZlMyO_27Mzuk--DgkY8vp3L63MTjfl_u5bGpQkvP_A4ECi4EC6iOwKeacnNefqd-b9KUR9CGrPmbVJav-yaoPiB1RLo_DxiW9jWM6hPlLfQPEVXiX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Various Moduli of Smoothness and K-Functionals</title><source>Springer Nature - Complete Springer Journals</source><creator>Trigub, R. M.</creator><creatorcontrib>Trigub, R. M.</creatorcontrib><description>We present a survey of the results on the exact rates of approximation of functions by linear means of Fourier series and Fourier integrals. The corresponding
K
-functionals are expressed via the special moduli of smoothness.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-020-01848-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2020-12, Vol.72 (7), p.1131-1163</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-a925111cfd9d37c463a3168140c6d01610c61e7b1ac6ea47f87c53cfacb273e43</citedby><cites>FETCH-LOGICAL-c369t-a925111cfd9d37c463a3168140c6d01610c61e7b1ac6ea47f87c53cfacb273e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-020-01848-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-020-01848-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Trigub, R. M.</creatorcontrib><title>On Various Moduli of Smoothness and K-Functionals</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We present a survey of the results on the exact rates of approximation of functions by linear means of Fourier series and Fourier integrals. The corresponding
K
-functionals are expressed via the special moduli of smoothness.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqN0MtOAyEYhmFiNLFWb8DV3AD1_4fTzLJprBo1XXjYEspAnaYFAzML715qXRvD4ksID4uXkGuEGQKom4xYC0ahBgrY8IbCCZmgUIy2TMlTMgHgSEXbinNykfMWoLBGTQiuQvVuUh_HXD3Hbtz1VfTVyz7G4SO4nCsTuuqRLsdghz4Gs8uX5MyXcVe_OyVvy9vXxT19Wt09LOZP1DLZDtS0tUBE67u2Y8pyyQxD2SAHKztAiWXRqTUaK53hyjfKCma9setaMcfZlMyO_27Mzuk--DgkY8vp3L63MTjfl_u5bGpQkvP_A4ECi4EC6iOwKeacnNefqd-b9KUR9CGrPmbVJav-yaoPiB1RLo_DxiW9jWM6hPlLfQPEVXiX</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Trigub, R. M.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201201</creationdate><title>On Various Moduli of Smoothness and K-Functionals</title><author>Trigub, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-a925111cfd9d37c463a3168140c6d01610c61e7b1ac6ea47f87c53cfacb273e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trigub, R. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trigub, R. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Various Moduli of Smoothness and K-Functionals</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>72</volume><issue>7</issue><spage>1131</spage><epage>1163</epage><pages>1131-1163</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We present a survey of the results on the exact rates of approximation of functions by linear means of Fourier series and Fourier integrals. The corresponding
K
-functionals are expressed via the special moduli of smoothness.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-020-01848-0</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2020-12, Vol.72 (7), p.1131-1163 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A682076444 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Analysis Applications of Mathematics Geometry Mathematics Mathematics and Statistics Statistics |
title | On Various Moduli of Smoothness and K-Functionals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Various%20Moduli%20of%20Smoothness%20and%20K-Functionals&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Trigub,%20R.%20M.&rft.date=2020-12-01&rft.volume=72&rft.issue=7&rft.spage=1131&rft.epage=1163&rft.pages=1131-1163&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-020-01848-0&rft_dat=%3Cgale_cross%3EA651512070%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A651512070&rfr_iscdi=true |