Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China
Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. Riparian wetlands play a significant role in regulating carbon and nitrogen cycles. In this study, we analyzed the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)...
Gespeichert in:
Veröffentlicht in: | Biogeosciences 2021-09, Vol.18 (16), p.4855-4872 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4872 |
---|---|
container_issue | 16 |
container_start_page | 4855 |
container_title | Biogeosciences |
container_volume | 18 |
creator | Liu, Xinyu Lu, Xixi Yu, Ruihong Sun, Heyang Xue, Hao Qi, Zhen Cao, Zhengxu Zhang, Zhuangzhuang Liu, Tingxi |
description | Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. Riparian wetlands play a significant role in regulating carbon and nitrogen cycles. In this study, we analyzed the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas (GHG) emissions. Moreover, the impact of the catchment hydrology and soil property variations on GHG emissions over time and space was evaluated. Our results demonstrate that riparian wetlands emit larger amounts of CO2 (335-2790 mgm 2 h(-1) in the wet season and 72387 mgm 2 h(-1) in the dry season) than CH4 and N2O to the atmosphere due to high plant and soil respiration. The results also reveal clear seasonal variations and spatial patterns along the transects in the longitudinal direction. N2O emissions showed a spatiotemporal pattern similar to that of CO2 emissions. Near-stream sites were the only sources of CH4 emissions, while the other sites served as sinks for these emissions. Soil moisture content and soil temperature were the essential factors controlling GHG emissions, and abundant aboveground biomass promoted the CO2, CH4, and N2O emissions. Moreover, compared to different types of grasslands, riparian wetlands were the potential hotspots of GHG emissions in the Inner Mongolian region. Degradation of downstream wetlands has reduced the soil carbon pool by approximately 60 %, decreased CO2 emissions by approx- imately 35 %, and converted the wetland from a CH4 and N2O source to a sink. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect GHG emissions. |
doi_str_mv | 10.5194/bg-18-4855-2021 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A673948848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A673948848</galeid><doaj_id>oai_doaj_org_article_70ef5ea1195447d29c9c0f70057eafcc</doaj_id><sourcerecordid>A673948848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-1c5df4939658e4e3c47dac92553ecc2f4e0b359ecbe44c32a81b70743bf5a6ac3</originalsourceid><addsrcrecordid>eNqNkk2PFCEQhjtGE9fVs1cST8b0LnRDA942k3WdZI2JH2dSzRQ9TGZgBCa7_ntpx4yZxIPhQFF53regqKZ5zeiVYJpfj1PLVMuVEG1HO_akuWCyG1rOlH56iiV93rzIeUNpr6gSF028S4hhHQ8ZyQQZM8Gdz9nHkIlLcUeS30PyEMgDli2EVX5P6gEfYbff4hEpayTLEDCRTzFMceuBTAlynnGScKpmxAeyWPsAL5tnDrYZX_3ZL5vvH26_LT6295_vloub-9ZyKUvLrFg5rns9CIUc-5pdgdWdED1a2zmOdOyFRjsi57bvQLFRUsn70QkYwPaXzfLou4qwMfvkd5B-mgje_E7ENBlIxdstGknRCQTGtOC1TKetttRJSoVEcHb2enP02qf444C5mE08pFCvbzoxSDVwPai_1ATV1AcXSwJbm2nNzSB7zZXiM3X1D6quVe27jQGdr_kzwdszQWUKPpYJDjmb5dcv5-z1kbUp5pzQnR7OqJmHxIyTYcrMQ2LmIamKd0fFA47RZesxWDypKKWD7gZNuxrRmVb_Ty98gVK_fhEPofS_ABGKzx0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2567864968</pqid></control><display><type>article</type><title>Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Liu, Xinyu ; Lu, Xixi ; Yu, Ruihong ; Sun, Heyang ; Xue, Hao ; Qi, Zhen ; Cao, Zhengxu ; Zhang, Zhuangzhuang ; Liu, Tingxi</creator><creatorcontrib>Liu, Xinyu ; Lu, Xixi ; Yu, Ruihong ; Sun, Heyang ; Xue, Hao ; Qi, Zhen ; Cao, Zhengxu ; Zhang, Zhuangzhuang ; Liu, Tingxi</creatorcontrib><description>Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. Riparian wetlands play a significant role in regulating carbon and nitrogen cycles. In this study, we analyzed the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas (GHG) emissions. Moreover, the impact of the catchment hydrology and soil property variations on GHG emissions over time and space was evaluated. Our results demonstrate that riparian wetlands emit larger amounts of CO2 (335-2790 mgm 2 h(-1) in the wet season and 72387 mgm 2 h(-1) in the dry season) than CH4 and N2O to the atmosphere due to high plant and soil respiration. The results also reveal clear seasonal variations and spatial patterns along the transects in the longitudinal direction. N2O emissions showed a spatiotemporal pattern similar to that of CO2 emissions. Near-stream sites were the only sources of CH4 emissions, while the other sites served as sinks for these emissions. Soil moisture content and soil temperature were the essential factors controlling GHG emissions, and abundant aboveground biomass promoted the CO2, CH4, and N2O emissions. Moreover, compared to different types of grasslands, riparian wetlands were the potential hotspots of GHG emissions in the Inner Mongolian region. Degradation of downstream wetlands has reduced the soil carbon pool by approximately 60 %, decreased CO2 emissions by approx- imately 35 %, and converted the wetland from a CH4 and N2O source to a sink. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect GHG emissions.</description><identifier>ISSN: 1726-4170</identifier><identifier>ISSN: 1726-4189</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-18-4855-2021</identifier><language>eng</language><publisher>GOTTINGEN: Copernicus Gesellschaft Mbh</publisher><subject>Air pollution ; Altitude ; Aluminum ; Anthropogenic factors ; Biodegradation ; Carbon content ; Carbon cycle ; Carbon dioxide ; Carbon dioxide emissions ; Catchment area ; Catchment hydrology ; Chromatography ; Climate change ; Dry season ; Drying ; Ecology ; Emissions ; Environmental aspects ; Environmental degradation ; Environmental Sciences & Ecology ; Gases ; Geology ; Geosciences, Multidisciplinary ; Global warming ; Grasslands ; Greenhouse effect ; Greenhouse gases ; Human influences ; Hydrology ; Laboratories ; Life Sciences & Biomedicine ; Methane ; Moisture content ; Nitrogen oxide ; Nitrous oxide ; Physical Sciences ; Precipitation ; Radiation ; Rainy season ; Respiration ; River basins ; Science & Technology ; Seasonal variation ; Seasonal variations ; Soil moisture ; Soil moisture content ; Soil properties ; Soil respiration ; Soil temperature ; Soils ; Stream flow ; Water content ; Wet season ; Wetlands</subject><ispartof>Biogeosciences, 2021-09, Vol.18 (16), p.4855-4872</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000692690200001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c477t-1c5df4939658e4e3c47dac92553ecc2f4e0b359ecbe44c32a81b70743bf5a6ac3</citedby><cites>FETCH-LOGICAL-c477t-1c5df4939658e4e3c47dac92553ecc2f4e0b359ecbe44c32a81b70743bf5a6ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Lu, Xixi</creatorcontrib><creatorcontrib>Yu, Ruihong</creatorcontrib><creatorcontrib>Sun, Heyang</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Qi, Zhen</creatorcontrib><creatorcontrib>Cao, Zhengxu</creatorcontrib><creatorcontrib>Zhang, Zhuangzhuang</creatorcontrib><creatorcontrib>Liu, Tingxi</creatorcontrib><title>Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China</title><title>Biogeosciences</title><addtitle>BIOGEOSCIENCES</addtitle><description>Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. Riparian wetlands play a significant role in regulating carbon and nitrogen cycles. In this study, we analyzed the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas (GHG) emissions. Moreover, the impact of the catchment hydrology and soil property variations on GHG emissions over time and space was evaluated. Our results demonstrate that riparian wetlands emit larger amounts of CO2 (335-2790 mgm 2 h(-1) in the wet season and 72387 mgm 2 h(-1) in the dry season) than CH4 and N2O to the atmosphere due to high plant and soil respiration. The results also reveal clear seasonal variations and spatial patterns along the transects in the longitudinal direction. N2O emissions showed a spatiotemporal pattern similar to that of CO2 emissions. Near-stream sites were the only sources of CH4 emissions, while the other sites served as sinks for these emissions. Soil moisture content and soil temperature were the essential factors controlling GHG emissions, and abundant aboveground biomass promoted the CO2, CH4, and N2O emissions. Moreover, compared to different types of grasslands, riparian wetlands were the potential hotspots of GHG emissions in the Inner Mongolian region. Degradation of downstream wetlands has reduced the soil carbon pool by approximately 60 %, decreased CO2 emissions by approx- imately 35 %, and converted the wetland from a CH4 and N2O source to a sink. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect GHG emissions.</description><subject>Air pollution</subject><subject>Altitude</subject><subject>Aluminum</subject><subject>Anthropogenic factors</subject><subject>Biodegradation</subject><subject>Carbon content</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Catchment area</subject><subject>Catchment hydrology</subject><subject>Chromatography</subject><subject>Climate change</subject><subject>Dry season</subject><subject>Drying</subject><subject>Ecology</subject><subject>Emissions</subject><subject>Environmental aspects</subject><subject>Environmental degradation</subject><subject>Environmental Sciences & Ecology</subject><subject>Gases</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Global warming</subject><subject>Grasslands</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Human influences</subject><subject>Hydrology</subject><subject>Laboratories</subject><subject>Life Sciences & Biomedicine</subject><subject>Methane</subject><subject>Moisture content</subject><subject>Nitrogen oxide</subject><subject>Nitrous oxide</subject><subject>Physical Sciences</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Rainy season</subject><subject>Respiration</subject><subject>River basins</subject><subject>Science & Technology</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Soil moisture</subject><subject>Soil moisture content</subject><subject>Soil properties</subject><subject>Soil respiration</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Stream flow</subject><subject>Water content</subject><subject>Wet season</subject><subject>Wetlands</subject><issn>1726-4170</issn><issn>1726-4189</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk2PFCEQhjtGE9fVs1cST8b0LnRDA942k3WdZI2JH2dSzRQ9TGZgBCa7_ntpx4yZxIPhQFF53regqKZ5zeiVYJpfj1PLVMuVEG1HO_akuWCyG1rOlH56iiV93rzIeUNpr6gSF028S4hhHQ8ZyQQZM8Gdz9nHkIlLcUeS30PyEMgDli2EVX5P6gEfYbff4hEpayTLEDCRTzFMceuBTAlynnGScKpmxAeyWPsAL5tnDrYZX_3ZL5vvH26_LT6295_vloub-9ZyKUvLrFg5rns9CIUc-5pdgdWdED1a2zmOdOyFRjsi57bvQLFRUsn70QkYwPaXzfLou4qwMfvkd5B-mgje_E7ENBlIxdstGknRCQTGtOC1TKetttRJSoVEcHb2enP02qf444C5mE08pFCvbzoxSDVwPai_1ATV1AcXSwJbm2nNzSB7zZXiM3X1D6quVe27jQGdr_kzwdszQWUKPpYJDjmb5dcv5-z1kbUp5pzQnR7OqJmHxIyTYcrMQ2LmIamKd0fFA47RZesxWDypKKWD7gZNuxrRmVb_Ty98gVK_fhEPofS_ABGKzx0</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Liu, Xinyu</creator><creator>Lu, Xixi</creator><creator>Yu, Ruihong</creator><creator>Sun, Heyang</creator><creator>Xue, Hao</creator><creator>Qi, Zhen</creator><creator>Cao, Zhengxu</creator><creator>Zhang, Zhuangzhuang</creator><creator>Liu, Tingxi</creator><general>Copernicus Gesellschaft Mbh</general><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20210901</creationdate><title>Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China</title><author>Liu, Xinyu ; Lu, Xixi ; Yu, Ruihong ; Sun, Heyang ; Xue, Hao ; Qi, Zhen ; Cao, Zhengxu ; Zhang, Zhuangzhuang ; Liu, Tingxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-1c5df4939658e4e3c47dac92553ecc2f4e0b359ecbe44c32a81b70743bf5a6ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air pollution</topic><topic>Altitude</topic><topic>Aluminum</topic><topic>Anthropogenic factors</topic><topic>Biodegradation</topic><topic>Carbon content</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Catchment area</topic><topic>Catchment hydrology</topic><topic>Chromatography</topic><topic>Climate change</topic><topic>Dry season</topic><topic>Drying</topic><topic>Ecology</topic><topic>Emissions</topic><topic>Environmental aspects</topic><topic>Environmental degradation</topic><topic>Environmental Sciences & Ecology</topic><topic>Gases</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Global warming</topic><topic>Grasslands</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Human influences</topic><topic>Hydrology</topic><topic>Laboratories</topic><topic>Life Sciences & Biomedicine</topic><topic>Methane</topic><topic>Moisture content</topic><topic>Nitrogen oxide</topic><topic>Nitrous oxide</topic><topic>Physical Sciences</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Rainy season</topic><topic>Respiration</topic><topic>River basins</topic><topic>Science & Technology</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Soil moisture</topic><topic>Soil moisture content</topic><topic>Soil properties</topic><topic>Soil respiration</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Stream flow</topic><topic>Water content</topic><topic>Wet season</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Lu, Xixi</creatorcontrib><creatorcontrib>Yu, Ruihong</creatorcontrib><creatorcontrib>Sun, Heyang</creatorcontrib><creatorcontrib>Xue, Hao</creatorcontrib><creatorcontrib>Qi, Zhen</creatorcontrib><creatorcontrib>Cao, Zhengxu</creatorcontrib><creatorcontrib>Zhang, Zhuangzhuang</creatorcontrib><creatorcontrib>Liu, Tingxi</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xinyu</au><au>Lu, Xixi</au><au>Yu, Ruihong</au><au>Sun, Heyang</au><au>Xue, Hao</au><au>Qi, Zhen</au><au>Cao, Zhengxu</au><au>Zhang, Zhuangzhuang</au><au>Liu, Tingxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China</atitle><jtitle>Biogeosciences</jtitle><stitle>BIOGEOSCIENCES</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>18</volume><issue>16</issue><spage>4855</spage><epage>4872</epage><pages>4855-4872</pages><issn>1726-4170</issn><issn>1726-4189</issn><eissn>1726-4189</eissn><abstract>Gradual riparian wetland drying is increasingly sensitive to global warming and contributes to climate change. Riparian wetlands play a significant role in regulating carbon and nitrogen cycles. In this study, we analyzed the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from riparian wetlands in the Xilin River basin to understand the role of these ecosystems in greenhouse gas (GHG) emissions. Moreover, the impact of the catchment hydrology and soil property variations on GHG emissions over time and space was evaluated. Our results demonstrate that riparian wetlands emit larger amounts of CO2 (335-2790 mgm 2 h(-1) in the wet season and 72387 mgm 2 h(-1) in the dry season) than CH4 and N2O to the atmosphere due to high plant and soil respiration. The results also reveal clear seasonal variations and spatial patterns along the transects in the longitudinal direction. N2O emissions showed a spatiotemporal pattern similar to that of CO2 emissions. Near-stream sites were the only sources of CH4 emissions, while the other sites served as sinks for these emissions. Soil moisture content and soil temperature were the essential factors controlling GHG emissions, and abundant aboveground biomass promoted the CO2, CH4, and N2O emissions. Moreover, compared to different types of grasslands, riparian wetlands were the potential hotspots of GHG emissions in the Inner Mongolian region. Degradation of downstream wetlands has reduced the soil carbon pool by approximately 60 %, decreased CO2 emissions by approx- imately 35 %, and converted the wetland from a CH4 and N2O source to a sink. Our study showed that anthropogenic activities have extensively changed the hydrological characteristics of the riparian wetlands and might accelerate carbon loss, which could further affect GHG emissions.</abstract><cop>GOTTINGEN</cop><pub>Copernicus Gesellschaft Mbh</pub><doi>10.5194/bg-18-4855-2021</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1726-4170 |
ispartof | Biogeosciences, 2021-09, Vol.18 (16), p.4855-4872 |
issn | 1726-4170 1726-4189 1726-4189 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A673948848 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Air pollution Altitude Aluminum Anthropogenic factors Biodegradation Carbon content Carbon cycle Carbon dioxide Carbon dioxide emissions Catchment area Catchment hydrology Chromatography Climate change Dry season Drying Ecology Emissions Environmental aspects Environmental degradation Environmental Sciences & Ecology Gases Geology Geosciences, Multidisciplinary Global warming Grasslands Greenhouse effect Greenhouse gases Human influences Hydrology Laboratories Life Sciences & Biomedicine Methane Moisture content Nitrogen oxide Nitrous oxide Physical Sciences Precipitation Radiation Rainy season Respiration River basins Science & Technology Seasonal variation Seasonal variations Soil moisture Soil moisture content Soil properties Soil respiration Soil temperature Soils Stream flow Water content Wet season Wetlands |
title | Greenhouse gases emissions from riparian wetlands: an example from the Inner Mongolia grassland region in China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T00%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greenhouse%20gases%20emissions%20from%20riparian%20wetlands:%20an%20example%20from%20the%20Inner%20Mongolia%20grassland%20region%20in%20China&rft.jtitle=Biogeosciences&rft.au=Liu,%20Xinyu&rft.date=2021-09-01&rft.volume=18&rft.issue=16&rft.spage=4855&rft.epage=4872&rft.pages=4855-4872&rft.issn=1726-4170&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-18-4855-2021&rft_dat=%3Cgale_cross%3EA673948848%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2567864968&rft_id=info:pmid/&rft_galeid=A673948848&rft_doaj_id=oai_doaj_org_article_70ef5ea1195447d29c9c0f70057eafcc&rfr_iscdi=true |