Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage

Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome medicine 2021-07, Vol.13 (1), p.122-122, Article 122
Hauptverfasser: Meyer, Douglas, Kames, Jacob, Bar, Haim, Komar, Anton A, Alexaki, Aikaterini, Ibla, Juan, Hunt, Ryan C, Santana-Quintero, Luis V, Golikov, Anton, DiCuccio, Michael, Kimchi-Sarfaty, Chava
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue 1
container_start_page 122
container_title Genome medicine
container_volume 13
creator Meyer, Douglas
Kames, Jacob
Bar, Haim
Komar, Anton A
Alexaki, Aikaterini
Ibla, Juan
Hunt, Ryan C
Santana-Quintero, Luis V
Golikov, Anton
DiCuccio, Michael
Kimchi-Sarfaty, Chava
description Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest. We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues. We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research. Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.
doi_str_mv 10.1186/s13073-021-00935-6
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A672349069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672349069</galeid><doaj_id>oai_doaj_org_article_c7ca96719b204fc496ee0de68b57825b</doaj_id><sourcerecordid>A672349069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-52917355612fdd96011f43df0cf7fdb29fb4604ce37431d929b43fd3d455e3703</originalsourceid><addsrcrecordid>eNptkttqVDEUhjei2Fp9AS8kIBRvds05kxuhjKdCQS9a8C5k5zCTYU8yJtmFvoWPbDoz1hmRXCSsfP-_WIu_614jeIHQjL8viEBBeohRD6EkrOdPulMkGO-lpD-eHrxPuhelrCDkFFPxvDshlGCEIDztfn0MpYZoKihhEXWdsisgeWCSTRHoaPevjQ4ZTEUvHAgREAw2Oax1vgd1WqcM6v2m6dpPXToQ050bgdVVD7o4MNfRuDxP8_T99qYA33CzLfVl40zwwex7bO1fds-8Hot7tb_PutvPn27mX_vrb1-u5pfXvWGS1p5hiQRhjCPsrZUcIuQpsR4aL7wdsPQD5ZAaRwQlyEosB0q8JZYy1mqQnHVXO1-b9Ertp1FJB7UtpLxQOtdgRqeMMFpygeSAIfWGSu4ctI7PBiZmmA3N68POazMNa2eNizXr8cj0-CeGpVqkOzUjSHDBmsG7vUFOPydXqlqHYtw46ujSVBRug5KZkJg29O0_6CpNObZVNYpjJmCb9y-10G2AEH1qfc2DqbrkAhMqIZeNuvgP1Y5162BSdD60-pHg_ECwdHqsy5LGqYYUyzGId6DJqZTs_OMyEFQP4VW78KoWXrUNr-JN9OZwjY-SP2klvwGeaOkw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562570431</pqid></control><display><type>article</type><title>Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Meyer, Douglas ; Kames, Jacob ; Bar, Haim ; Komar, Anton A ; Alexaki, Aikaterini ; Ibla, Juan ; Hunt, Ryan C ; Santana-Quintero, Luis V ; Golikov, Anton ; DiCuccio, Michael ; Kimchi-Sarfaty, Chava</creator><creatorcontrib>Meyer, Douglas ; Kames, Jacob ; Bar, Haim ; Komar, Anton A ; Alexaki, Aikaterini ; Ibla, Juan ; Hunt, Ryan C ; Santana-Quintero, Luis V ; Golikov, Anton ; DiCuccio, Michael ; Kimchi-Sarfaty, Chava</creatorcontrib><description>Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest. We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues. We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research. Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.</description><identifier>ISSN: 1756-994X</identifier><identifier>EISSN: 1756-994X</identifier><identifier>DOI: 10.1186/s13073-021-00935-6</identifier><identifier>PMID: 34321100</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Biomarkers, Tumor ; Breast ; Breast cancer ; Cancer ; Cancer research ; Cancer transcriptome ; CancerCoCoPUTs ; Codon ; Codon pair ; Codon Usage ; Computational Biology - methods ; Databases, Genetic ; Development and progression ; Drug development ; E coli ; Efficiency ; Epidermal growth factor ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes ; Genetic aspects ; Genome-Wide Association Study ; Genomes ; Genomics ; Genomics - methods ; Glycine ; Humans ; Invasiveness ; Kaplan-Meier Estimate ; Medical prognosis ; Metadata ; Mutation ; Neoplasms - diagnosis ; Neoplasms - genetics ; Neoplasms - mortality ; Patients ; Prognosis ; Relative synonymous codon usage (RSCU) ; Solid tumors ; Survival analysis ; The Cancer Genome Atlas (TCGA) ; Transcriptome ; Transcriptomes ; Transfer RNA ; tRNA ; Tumors ; Use statistics ; Vaccines</subject><ispartof>Genome medicine, 2021-07, Vol.13 (1), p.122-122, Article 122</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-52917355612fdd96011f43df0cf7fdb29fb4604ce37431d929b43fd3d455e3703</citedby><cites>FETCH-LOGICAL-c594t-52917355612fdd96011f43df0cf7fdb29fb4604ce37431d929b43fd3d455e3703</cites><orcidid>0000-0002-9355-8585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317675/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317675/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34321100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, Douglas</creatorcontrib><creatorcontrib>Kames, Jacob</creatorcontrib><creatorcontrib>Bar, Haim</creatorcontrib><creatorcontrib>Komar, Anton A</creatorcontrib><creatorcontrib>Alexaki, Aikaterini</creatorcontrib><creatorcontrib>Ibla, Juan</creatorcontrib><creatorcontrib>Hunt, Ryan C</creatorcontrib><creatorcontrib>Santana-Quintero, Luis V</creatorcontrib><creatorcontrib>Golikov, Anton</creatorcontrib><creatorcontrib>DiCuccio, Michael</creatorcontrib><creatorcontrib>Kimchi-Sarfaty, Chava</creatorcontrib><title>Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage</title><title>Genome medicine</title><addtitle>Genome Med</addtitle><description>Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest. We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues. We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research. Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.</description><subject>Analysis</subject><subject>Biomarkers, Tumor</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer research</subject><subject>Cancer transcriptome</subject><subject>CancerCoCoPUTs</subject><subject>Codon</subject><subject>Codon pair</subject><subject>Codon Usage</subject><subject>Computational Biology - methods</subject><subject>Databases, Genetic</subject><subject>Development and progression</subject><subject>Drug development</subject><subject>E coli</subject><subject>Efficiency</subject><subject>Epidermal growth factor</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Glycine</subject><subject>Humans</subject><subject>Invasiveness</subject><subject>Kaplan-Meier Estimate</subject><subject>Medical prognosis</subject><subject>Metadata</subject><subject>Mutation</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - mortality</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Relative synonymous codon usage (RSCU)</subject><subject>Solid tumors</subject><subject>Survival analysis</subject><subject>The Cancer Genome Atlas (TCGA)</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Transfer RNA</subject><subject>tRNA</subject><subject>Tumors</subject><subject>Use statistics</subject><subject>Vaccines</subject><issn>1756-994X</issn><issn>1756-994X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkttqVDEUhjei2Fp9AS8kIBRvds05kxuhjKdCQS9a8C5k5zCTYU8yJtmFvoWPbDoz1hmRXCSsfP-_WIu_614jeIHQjL8viEBBeohRD6EkrOdPulMkGO-lpD-eHrxPuhelrCDkFFPxvDshlGCEIDztfn0MpYZoKihhEXWdsisgeWCSTRHoaPevjQ4ZTEUvHAgREAw2Oax1vgd1WqcM6v2m6dpPXToQ050bgdVVD7o4MNfRuDxP8_T99qYA33CzLfVl40zwwex7bO1fds-8Hot7tb_PutvPn27mX_vrb1-u5pfXvWGS1p5hiQRhjCPsrZUcIuQpsR4aL7wdsPQD5ZAaRwQlyEosB0q8JZYy1mqQnHVXO1-b9Ertp1FJB7UtpLxQOtdgRqeMMFpygeSAIfWGSu4ctI7PBiZmmA3N68POazMNa2eNizXr8cj0-CeGpVqkOzUjSHDBmsG7vUFOPydXqlqHYtw46ujSVBRug5KZkJg29O0_6CpNObZVNYpjJmCb9y-10G2AEH1qfc2DqbrkAhMqIZeNuvgP1Y5162BSdD60-pHg_ECwdHqsy5LGqYYUyzGId6DJqZTs_OMyEFQP4VW78KoWXrUNr-JN9OZwjY-SP2klvwGeaOkw</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Meyer, Douglas</creator><creator>Kames, Jacob</creator><creator>Bar, Haim</creator><creator>Komar, Anton A</creator><creator>Alexaki, Aikaterini</creator><creator>Ibla, Juan</creator><creator>Hunt, Ryan C</creator><creator>Santana-Quintero, Luis V</creator><creator>Golikov, Anton</creator><creator>DiCuccio, Michael</creator><creator>Kimchi-Sarfaty, Chava</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9355-8585</orcidid></search><sort><creationdate>20210728</creationdate><title>Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage</title><author>Meyer, Douglas ; Kames, Jacob ; Bar, Haim ; Komar, Anton A ; Alexaki, Aikaterini ; Ibla, Juan ; Hunt, Ryan C ; Santana-Quintero, Luis V ; Golikov, Anton ; DiCuccio, Michael ; Kimchi-Sarfaty, Chava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-52917355612fdd96011f43df0cf7fdb29fb4604ce37431d929b43fd3d455e3703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Biomarkers, Tumor</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer research</topic><topic>Cancer transcriptome</topic><topic>CancerCoCoPUTs</topic><topic>Codon</topic><topic>Codon pair</topic><topic>Codon Usage</topic><topic>Computational Biology - methods</topic><topic>Databases, Genetic</topic><topic>Development and progression</topic><topic>Drug development</topic><topic>E coli</topic><topic>Efficiency</topic><topic>Epidermal growth factor</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Glycine</topic><topic>Humans</topic><topic>Invasiveness</topic><topic>Kaplan-Meier Estimate</topic><topic>Medical prognosis</topic><topic>Metadata</topic><topic>Mutation</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - mortality</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Relative synonymous codon usage (RSCU)</topic><topic>Solid tumors</topic><topic>Survival analysis</topic><topic>The Cancer Genome Atlas (TCGA)</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Transfer RNA</topic><topic>tRNA</topic><topic>Tumors</topic><topic>Use statistics</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Douglas</creatorcontrib><creatorcontrib>Kames, Jacob</creatorcontrib><creatorcontrib>Bar, Haim</creatorcontrib><creatorcontrib>Komar, Anton A</creatorcontrib><creatorcontrib>Alexaki, Aikaterini</creatorcontrib><creatorcontrib>Ibla, Juan</creatorcontrib><creatorcontrib>Hunt, Ryan C</creatorcontrib><creatorcontrib>Santana-Quintero, Luis V</creatorcontrib><creatorcontrib>Golikov, Anton</creatorcontrib><creatorcontrib>DiCuccio, Michael</creatorcontrib><creatorcontrib>Kimchi-Sarfaty, Chava</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Genome medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Douglas</au><au>Kames, Jacob</au><au>Bar, Haim</au><au>Komar, Anton A</au><au>Alexaki, Aikaterini</au><au>Ibla, Juan</au><au>Hunt, Ryan C</au><au>Santana-Quintero, Luis V</au><au>Golikov, Anton</au><au>DiCuccio, Michael</au><au>Kimchi-Sarfaty, Chava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage</atitle><jtitle>Genome medicine</jtitle><addtitle>Genome Med</addtitle><date>2021-07-28</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>122</spage><epage>122</epage><pages>122-122</pages><artnum>122</artnum><issn>1756-994X</issn><eissn>1756-994X</eissn><abstract>Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest. We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues. We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research. Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34321100</pmid><doi>10.1186/s13073-021-00935-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9355-8585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-994X
ispartof Genome medicine, 2021-07, Vol.13 (1), p.122-122, Article 122
issn 1756-994X
1756-994X
language eng
recordid cdi_gale_infotracacademiconefile_A672349069
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals
subjects Analysis
Biomarkers, Tumor
Breast
Breast cancer
Cancer
Cancer research
Cancer transcriptome
CancerCoCoPUTs
Codon
Codon pair
Codon Usage
Computational Biology - methods
Databases, Genetic
Development and progression
Drug development
E coli
Efficiency
Epidermal growth factor
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Genes
Genetic aspects
Genome-Wide Association Study
Genomes
Genomics
Genomics - methods
Glycine
Humans
Invasiveness
Kaplan-Meier Estimate
Medical prognosis
Metadata
Mutation
Neoplasms - diagnosis
Neoplasms - genetics
Neoplasms - mortality
Patients
Prognosis
Relative synonymous codon usage (RSCU)
Solid tumors
Survival analysis
The Cancer Genome Atlas (TCGA)
Transcriptome
Transcriptomes
Transfer RNA
tRNA
Tumors
Use statistics
Vaccines
title Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20signatures%20of%20codon%20and%20codon%20pair%20usage%20in%2032%20primary%20tumor%20types%20in%20the%20novel%20database%20CancerCoCoPUTs%20for%20cancer-specific%20codon%20usage&rft.jtitle=Genome%20medicine&rft.au=Meyer,%20Douglas&rft.date=2021-07-28&rft.volume=13&rft.issue=1&rft.spage=122&rft.epage=122&rft.pages=122-122&rft.artnum=122&rft.issn=1756-994X&rft.eissn=1756-994X&rft_id=info:doi/10.1186/s13073-021-00935-6&rft_dat=%3Cgale_doaj_%3EA672349069%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562570431&rft_id=info:pmid/34321100&rft_galeid=A672349069&rft_doaj_id=oai_doaj_org_article_c7ca96719b204fc496ee0de68b57825b&rfr_iscdi=true