Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage
Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate...
Gespeichert in:
Veröffentlicht in: | Genome medicine 2021-07, Vol.13 (1), p.122-122, Article 122 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | 1 |
container_start_page | 122 |
container_title | Genome medicine |
container_volume | 13 |
creator | Meyer, Douglas Kames, Jacob Bar, Haim Komar, Anton A Alexaki, Aikaterini Ibla, Juan Hunt, Ryan C Santana-Quintero, Luis V Golikov, Anton DiCuccio, Michael Kimchi-Sarfaty, Chava |
description | Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest.
We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues.
We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research.
Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics. |
doi_str_mv | 10.1186/s13073-021-00935-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A672349069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672349069</galeid><doaj_id>oai_doaj_org_article_c7ca96719b204fc496ee0de68b57825b</doaj_id><sourcerecordid>A672349069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-52917355612fdd96011f43df0cf7fdb29fb4604ce37431d929b43fd3d455e3703</originalsourceid><addsrcrecordid>eNptkttqVDEUhjei2Fp9AS8kIBRvds05kxuhjKdCQS9a8C5k5zCTYU8yJtmFvoWPbDoz1hmRXCSsfP-_WIu_614jeIHQjL8viEBBeohRD6EkrOdPulMkGO-lpD-eHrxPuhelrCDkFFPxvDshlGCEIDztfn0MpYZoKihhEXWdsisgeWCSTRHoaPevjQ4ZTEUvHAgREAw2Oax1vgd1WqcM6v2m6dpPXToQ050bgdVVD7o4MNfRuDxP8_T99qYA33CzLfVl40zwwex7bO1fds-8Hot7tb_PutvPn27mX_vrb1-u5pfXvWGS1p5hiQRhjCPsrZUcIuQpsR4aL7wdsPQD5ZAaRwQlyEosB0q8JZYy1mqQnHVXO1-b9Ertp1FJB7UtpLxQOtdgRqeMMFpygeSAIfWGSu4ctI7PBiZmmA3N68POazMNa2eNizXr8cj0-CeGpVqkOzUjSHDBmsG7vUFOPydXqlqHYtw46ujSVBRug5KZkJg29O0_6CpNObZVNYpjJmCb9y-10G2AEH1qfc2DqbrkAhMqIZeNuvgP1Y5162BSdD60-pHg_ECwdHqsy5LGqYYUyzGId6DJqZTs_OMyEFQP4VW78KoWXrUNr-JN9OZwjY-SP2klvwGeaOkw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562570431</pqid></control><display><type>article</type><title>Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><creator>Meyer, Douglas ; Kames, Jacob ; Bar, Haim ; Komar, Anton A ; Alexaki, Aikaterini ; Ibla, Juan ; Hunt, Ryan C ; Santana-Quintero, Luis V ; Golikov, Anton ; DiCuccio, Michael ; Kimchi-Sarfaty, Chava</creator><creatorcontrib>Meyer, Douglas ; Kames, Jacob ; Bar, Haim ; Komar, Anton A ; Alexaki, Aikaterini ; Ibla, Juan ; Hunt, Ryan C ; Santana-Quintero, Luis V ; Golikov, Anton ; DiCuccio, Michael ; Kimchi-Sarfaty, Chava</creatorcontrib><description>Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest.
We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues.
We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research.
Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.</description><identifier>ISSN: 1756-994X</identifier><identifier>EISSN: 1756-994X</identifier><identifier>DOI: 10.1186/s13073-021-00935-6</identifier><identifier>PMID: 34321100</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Biomarkers, Tumor ; Breast ; Breast cancer ; Cancer ; Cancer research ; Cancer transcriptome ; CancerCoCoPUTs ; Codon ; Codon pair ; Codon Usage ; Computational Biology - methods ; Databases, Genetic ; Development and progression ; Drug development ; E coli ; Efficiency ; Epidermal growth factor ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes ; Genetic aspects ; Genome-Wide Association Study ; Genomes ; Genomics ; Genomics - methods ; Glycine ; Humans ; Invasiveness ; Kaplan-Meier Estimate ; Medical prognosis ; Metadata ; Mutation ; Neoplasms - diagnosis ; Neoplasms - genetics ; Neoplasms - mortality ; Patients ; Prognosis ; Relative synonymous codon usage (RSCU) ; Solid tumors ; Survival analysis ; The Cancer Genome Atlas (TCGA) ; Transcriptome ; Transcriptomes ; Transfer RNA ; tRNA ; Tumors ; Use statistics ; Vaccines</subject><ispartof>Genome medicine, 2021-07, Vol.13 (1), p.122-122, Article 122</ispartof><rights>2021. The Author(s).</rights><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-52917355612fdd96011f43df0cf7fdb29fb4604ce37431d929b43fd3d455e3703</citedby><cites>FETCH-LOGICAL-c594t-52917355612fdd96011f43df0cf7fdb29fb4604ce37431d929b43fd3d455e3703</cites><orcidid>0000-0002-9355-8585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317675/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317675/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34321100$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, Douglas</creatorcontrib><creatorcontrib>Kames, Jacob</creatorcontrib><creatorcontrib>Bar, Haim</creatorcontrib><creatorcontrib>Komar, Anton A</creatorcontrib><creatorcontrib>Alexaki, Aikaterini</creatorcontrib><creatorcontrib>Ibla, Juan</creatorcontrib><creatorcontrib>Hunt, Ryan C</creatorcontrib><creatorcontrib>Santana-Quintero, Luis V</creatorcontrib><creatorcontrib>Golikov, Anton</creatorcontrib><creatorcontrib>DiCuccio, Michael</creatorcontrib><creatorcontrib>Kimchi-Sarfaty, Chava</creatorcontrib><title>Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage</title><title>Genome medicine</title><addtitle>Genome Med</addtitle><description>Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest.
We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues.
We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research.
Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.</description><subject>Analysis</subject><subject>Biomarkers, Tumor</subject><subject>Breast</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer research</subject><subject>Cancer transcriptome</subject><subject>CancerCoCoPUTs</subject><subject>Codon</subject><subject>Codon pair</subject><subject>Codon Usage</subject><subject>Computational Biology - methods</subject><subject>Databases, Genetic</subject><subject>Development and progression</subject><subject>Drug development</subject><subject>E coli</subject><subject>Efficiency</subject><subject>Epidermal growth factor</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genomics - methods</subject><subject>Glycine</subject><subject>Humans</subject><subject>Invasiveness</subject><subject>Kaplan-Meier Estimate</subject><subject>Medical prognosis</subject><subject>Metadata</subject><subject>Mutation</subject><subject>Neoplasms - diagnosis</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - mortality</subject><subject>Patients</subject><subject>Prognosis</subject><subject>Relative synonymous codon usage (RSCU)</subject><subject>Solid tumors</subject><subject>Survival analysis</subject><subject>The Cancer Genome Atlas (TCGA)</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Transfer RNA</subject><subject>tRNA</subject><subject>Tumors</subject><subject>Use statistics</subject><subject>Vaccines</subject><issn>1756-994X</issn><issn>1756-994X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkttqVDEUhjei2Fp9AS8kIBRvds05kxuhjKdCQS9a8C5k5zCTYU8yJtmFvoWPbDoz1hmRXCSsfP-_WIu_614jeIHQjL8viEBBeohRD6EkrOdPulMkGO-lpD-eHrxPuhelrCDkFFPxvDshlGCEIDztfn0MpYZoKihhEXWdsisgeWCSTRHoaPevjQ4ZTEUvHAgREAw2Oax1vgd1WqcM6v2m6dpPXToQ050bgdVVD7o4MNfRuDxP8_T99qYA33CzLfVl40zwwex7bO1fds-8Hot7tb_PutvPn27mX_vrb1-u5pfXvWGS1p5hiQRhjCPsrZUcIuQpsR4aL7wdsPQD5ZAaRwQlyEosB0q8JZYy1mqQnHVXO1-b9Ertp1FJB7UtpLxQOtdgRqeMMFpygeSAIfWGSu4ctI7PBiZmmA3N68POazMNa2eNizXr8cj0-CeGpVqkOzUjSHDBmsG7vUFOPydXqlqHYtw46ujSVBRug5KZkJg29O0_6CpNObZVNYpjJmCb9y-10G2AEH1qfc2DqbrkAhMqIZeNuvgP1Y5162BSdD60-pHg_ECwdHqsy5LGqYYUyzGId6DJqZTs_OMyEFQP4VW78KoWXrUNr-JN9OZwjY-SP2klvwGeaOkw</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Meyer, Douglas</creator><creator>Kames, Jacob</creator><creator>Bar, Haim</creator><creator>Komar, Anton A</creator><creator>Alexaki, Aikaterini</creator><creator>Ibla, Juan</creator><creator>Hunt, Ryan C</creator><creator>Santana-Quintero, Luis V</creator><creator>Golikov, Anton</creator><creator>DiCuccio, Michael</creator><creator>Kimchi-Sarfaty, Chava</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9355-8585</orcidid></search><sort><creationdate>20210728</creationdate><title>Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage</title><author>Meyer, Douglas ; Kames, Jacob ; Bar, Haim ; Komar, Anton A ; Alexaki, Aikaterini ; Ibla, Juan ; Hunt, Ryan C ; Santana-Quintero, Luis V ; Golikov, Anton ; DiCuccio, Michael ; Kimchi-Sarfaty, Chava</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-52917355612fdd96011f43df0cf7fdb29fb4604ce37431d929b43fd3d455e3703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Biomarkers, Tumor</topic><topic>Breast</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer research</topic><topic>Cancer transcriptome</topic><topic>CancerCoCoPUTs</topic><topic>Codon</topic><topic>Codon pair</topic><topic>Codon Usage</topic><topic>Computational Biology - methods</topic><topic>Databases, Genetic</topic><topic>Development and progression</topic><topic>Drug development</topic><topic>E coli</topic><topic>Efficiency</topic><topic>Epidermal growth factor</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genomics - methods</topic><topic>Glycine</topic><topic>Humans</topic><topic>Invasiveness</topic><topic>Kaplan-Meier Estimate</topic><topic>Medical prognosis</topic><topic>Metadata</topic><topic>Mutation</topic><topic>Neoplasms - diagnosis</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - mortality</topic><topic>Patients</topic><topic>Prognosis</topic><topic>Relative synonymous codon usage (RSCU)</topic><topic>Solid tumors</topic><topic>Survival analysis</topic><topic>The Cancer Genome Atlas (TCGA)</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Transfer RNA</topic><topic>tRNA</topic><topic>Tumors</topic><topic>Use statistics</topic><topic>Vaccines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Douglas</creatorcontrib><creatorcontrib>Kames, Jacob</creatorcontrib><creatorcontrib>Bar, Haim</creatorcontrib><creatorcontrib>Komar, Anton A</creatorcontrib><creatorcontrib>Alexaki, Aikaterini</creatorcontrib><creatorcontrib>Ibla, Juan</creatorcontrib><creatorcontrib>Hunt, Ryan C</creatorcontrib><creatorcontrib>Santana-Quintero, Luis V</creatorcontrib><creatorcontrib>Golikov, Anton</creatorcontrib><creatorcontrib>DiCuccio, Michael</creatorcontrib><creatorcontrib>Kimchi-Sarfaty, Chava</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Genome medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Douglas</au><au>Kames, Jacob</au><au>Bar, Haim</au><au>Komar, Anton A</au><au>Alexaki, Aikaterini</au><au>Ibla, Juan</au><au>Hunt, Ryan C</au><au>Santana-Quintero, Luis V</au><au>Golikov, Anton</au><au>DiCuccio, Michael</au><au>Kimchi-Sarfaty, Chava</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage</atitle><jtitle>Genome medicine</jtitle><addtitle>Genome Med</addtitle><date>2021-07-28</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>122</spage><epage>122</epage><pages>122-122</pages><artnum>122</artnum><issn>1756-994X</issn><eissn>1756-994X</eissn><abstract>Gene expression is highly variable across tissues of multi-cellular organisms, influencing the codon usage of the tissue-specific transcriptome. Cancer disrupts the gene expression pattern of healthy tissue resulting in altered codon usage preferences. The topic of codon usage changes as they relate to codon demand, and tRNA supply in cancer is of growing interest.
We analyzed transcriptome-weighted codon and codon pair usage based on The Cancer Genome Atlas (TCGA) RNA-seq data from 6427 solid tumor samples and 632 normal tissue samples. This dataset represents 32 cancer types affecting 11 distinct tissues. Our analysis focused on tissues that give rise to multiple solid tumor types and cancer types that are present in multiple tissues.
We identified distinct patterns of synonymous codon usage changes for different cancer types affecting the same tissue. For example, a substantial increase in GGT-glycine was observed in invasive ductal carcinoma (IDC), invasive lobular carcinoma (ILC), and mixed invasive ductal and lobular carcinoma (IDLC) of the breast. Change in synonymous codon preference favoring GGT correlated with change in synonymous codon preference against GGC in IDC and IDLC, but not in ILC. Furthermore, we examined the codon usage changes between paired healthy/tumor tissue from the same patient. Using clinical data from TCGA, we conducted a survival analysis of patients based on the degree of change between healthy and tumor-specific codon usage, revealing an association between larger changes and increased mortality. We have also created a database that contains cancer-specific codon and codon pair usage data for cancer types derived from TCGA, which represents a comprehensive tool for codon-usage-oriented cancer research.
Based on data from TCGA, we have highlighted tumor type-specific signatures of codon and codon pair usage. Paired data revealed variable changes to codon usage patterns, which must be considered when designing personalized cancer treatments. The associated database, CancerCoCoPUTs, represents a comprehensive resource for codon and codon pair usage in cancer and is available at https://dnahive.fda.gov/review/cancercocoputs/ . These findings are important to understand the relationship between tRNA supply and codon demand in cancer states and could help guide the development of new cancer therapeutics.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>34321100</pmid><doi>10.1186/s13073-021-00935-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9355-8585</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-994X |
ispartof | Genome medicine, 2021-07, Vol.13 (1), p.122-122, Article 122 |
issn | 1756-994X 1756-994X |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A672349069 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerLink Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Springer Nature OA Free Journals |
subjects | Analysis Biomarkers, Tumor Breast Breast cancer Cancer Cancer research Cancer transcriptome CancerCoCoPUTs Codon Codon pair Codon Usage Computational Biology - methods Databases, Genetic Development and progression Drug development E coli Efficiency Epidermal growth factor Gene expression Gene Expression Profiling Gene Expression Regulation, Neoplastic Genes Genetic aspects Genome-Wide Association Study Genomes Genomics Genomics - methods Glycine Humans Invasiveness Kaplan-Meier Estimate Medical prognosis Metadata Mutation Neoplasms - diagnosis Neoplasms - genetics Neoplasms - mortality Patients Prognosis Relative synonymous codon usage (RSCU) Solid tumors Survival analysis The Cancer Genome Atlas (TCGA) Transcriptome Transcriptomes Transfer RNA tRNA Tumors Use statistics Vaccines |
title | Distinct signatures of codon and codon pair usage in 32 primary tumor types in the novel database CancerCoCoPUTs for cancer-specific codon usage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20signatures%20of%20codon%20and%20codon%20pair%20usage%20in%2032%20primary%20tumor%20types%20in%20the%20novel%20database%20CancerCoCoPUTs%20for%20cancer-specific%20codon%20usage&rft.jtitle=Genome%20medicine&rft.au=Meyer,%20Douglas&rft.date=2021-07-28&rft.volume=13&rft.issue=1&rft.spage=122&rft.epage=122&rft.pages=122-122&rft.artnum=122&rft.issn=1756-994X&rft.eissn=1756-994X&rft_id=info:doi/10.1186/s13073-021-00935-6&rft_dat=%3Cgale_doaj_%3EA672349069%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562570431&rft_id=info:pmid/34321100&rft_galeid=A672349069&rft_doaj_id=oai_doaj_org_article_c7ca96719b204fc496ee0de68b57825b&rfr_iscdi=true |