Decorrelation estimates for random Schrödinger operators with non rank one perturbations

We prove decorrelation estimates for generalized lattice Anderson models on \mathbb Z^d constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics \xi^\omega_{E} and \xi^\omega_{E'} , associated with two energies E and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spectral theory 2021-01, Vol.11 (1), p.63-89
Hauptverfasser: Hislop, Peter D., Krishna, Maddaly, Shirley, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue 1
container_start_page 63
container_title Journal of spectral theory
container_volume 11
creator Hislop, Peter D.
Krishna, Maddaly
Shirley, Christopher
description We prove decorrelation estimates for generalized lattice Anderson models on \mathbb Z^d constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics \xi^\omega_{E} and \xi^\omega_{E'} , associated with two energies E and E' in the localization region and satisfying |E - E'| > 4d , are independent. That is, if I,J are two bounded intervals, the random variables \xi^\omega_{E}(I) and \xi^\omega_{E'}(J) , are independent and distributed according to a compound Poisson distribution whose Lévy measure has finite support. We also prove that the extended Minami estimate implies that the eigenvalues in the localization region have multiplicity at most the rank of the perturbation. The method of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21], extends to models for which the eigenvalues are degenerate, and applies to models for which the potential is not sign definite [20] in dimensions d \geq 1 .
doi_str_mv 10.4171/jst/336
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A656773739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656773739</galeid><sourcerecordid>A656773739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-227d6983bdcede5a71d23744f6a610272a907ab591e91b52fcfed32f165350133</originalsourceid><addsrcrecordid>eNo1UMtKQzEQDaJgqcVfyM7VbfO4Scyy1CcUXKigq0tuMmlT2xtJIuKP-QP-mNEqs5jhnDmHmYPQKSXTlio62-Qy41weoBGVsm1IS_jh_8z10zGa5LwhhFREVW6Eni_AxpRga0qIA4Zcws4UyNjHhJMZXNzhe7tOX58uDCtIOL5CMiWmjN9DWeOhiuraC44D4EqVt9T_WuUTdOTNNsPkr4_R49Xlw-KmWd5d3y7my8YyoUvDmHJSn_PeWXAgjKKOcdW2XhpJCVPMaKJMLzQFTXvBvPXgOPNUCi4I5XyMpnvfldlCFwYfSzK2loNdsPUsHyo-l0IqxRXXVXC2F9gUc07gu9dUn04fHSXdT4pdTbGrKfJvOxJm2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decorrelation estimates for random Schrödinger operators with non rank one perturbations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hislop, Peter D. ; Krishna, Maddaly ; Shirley, Christopher</creator><creatorcontrib>Hislop, Peter D. ; Krishna, Maddaly ; Shirley, Christopher</creatorcontrib><description>We prove decorrelation estimates for generalized lattice Anderson models on \mathbb Z^d constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics \xi^\omega_{E} and \xi^\omega_{E'} , associated with two energies E and E' in the localization region and satisfying |E - E'| &gt; 4d , are independent. That is, if I,J are two bounded intervals, the random variables \xi^\omega_{E}(I) and \xi^\omega_{E'}(J) , are independent and distributed according to a compound Poisson distribution whose Lévy measure has finite support. We also prove that the extended Minami estimate implies that the eigenvalues in the localization region have multiplicity at most the rank of the perturbation. The method of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21], extends to models for which the eigenvalues are degenerate, and applies to models for which the potential is not sign definite [20] in dimensions d \geq 1 .</description><identifier>ISSN: 1664-039X</identifier><identifier>EISSN: 1664-0403</identifier><identifier>DOI: 10.4171/jst/336</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Mathematical research ; Perturbation (Mathematics) ; Schrodinger equation</subject><ispartof>Journal of spectral theory, 2021-01, Vol.11 (1), p.63-89</ispartof><rights>COPYRIGHT 2021 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Hislop, Peter D.</creatorcontrib><creatorcontrib>Krishna, Maddaly</creatorcontrib><creatorcontrib>Shirley, Christopher</creatorcontrib><title>Decorrelation estimates for random Schrödinger operators with non rank one perturbations</title><title>Journal of spectral theory</title><description>We prove decorrelation estimates for generalized lattice Anderson models on \mathbb Z^d constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics \xi^\omega_{E} and \xi^\omega_{E'} , associated with two energies E and E' in the localization region and satisfying |E - E'| &gt; 4d , are independent. That is, if I,J are two bounded intervals, the random variables \xi^\omega_{E}(I) and \xi^\omega_{E'}(J) , are independent and distributed according to a compound Poisson distribution whose Lévy measure has finite support. We also prove that the extended Minami estimate implies that the eigenvalues in the localization region have multiplicity at most the rank of the perturbation. The method of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21], extends to models for which the eigenvalues are degenerate, and applies to models for which the potential is not sign definite [20] in dimensions d \geq 1 .</description><subject>Mathematical research</subject><subject>Perturbation (Mathematics)</subject><subject>Schrodinger equation</subject><issn>1664-039X</issn><issn>1664-0403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1UMtKQzEQDaJgqcVfyM7VbfO4Scyy1CcUXKigq0tuMmlT2xtJIuKP-QP-mNEqs5jhnDmHmYPQKSXTlio62-Qy41weoBGVsm1IS_jh_8z10zGa5LwhhFREVW6Eni_AxpRga0qIA4Zcws4UyNjHhJMZXNzhe7tOX58uDCtIOL5CMiWmjN9DWeOhiuraC44D4EqVt9T_WuUTdOTNNsPkr4_R49Xlw-KmWd5d3y7my8YyoUvDmHJSn_PeWXAgjKKOcdW2XhpJCVPMaKJMLzQFTXvBvPXgOPNUCi4I5XyMpnvfldlCFwYfSzK2loNdsPUsHyo-l0IqxRXXVXC2F9gUc07gu9dUn04fHSXdT4pdTbGrKfJvOxJm2A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hislop, Peter D.</creator><creator>Krishna, Maddaly</creator><creator>Shirley, Christopher</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Decorrelation estimates for random Schrödinger operators with non rank one perturbations</title><author>Hislop, Peter D. ; Krishna, Maddaly ; Shirley, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-227d6983bdcede5a71d23744f6a610272a907ab591e91b52fcfed32f165350133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical research</topic><topic>Perturbation (Mathematics)</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hislop, Peter D.</creatorcontrib><creatorcontrib>Krishna, Maddaly</creatorcontrib><creatorcontrib>Shirley, Christopher</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of spectral theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hislop, Peter D.</au><au>Krishna, Maddaly</au><au>Shirley, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decorrelation estimates for random Schrödinger operators with non rank one perturbations</atitle><jtitle>Journal of spectral theory</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>63</spage><epage>89</epage><pages>63-89</pages><issn>1664-039X</issn><eissn>1664-0403</eissn><abstract>We prove decorrelation estimates for generalized lattice Anderson models on \mathbb Z^d constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics \xi^\omega_{E} and \xi^\omega_{E'} , associated with two energies E and E' in the localization region and satisfying |E - E'| &gt; 4d , are independent. That is, if I,J are two bounded intervals, the random variables \xi^\omega_{E}(I) and \xi^\omega_{E'}(J) , are independent and distributed according to a compound Poisson distribution whose Lévy measure has finite support. We also prove that the extended Minami estimate implies that the eigenvalues in the localization region have multiplicity at most the rank of the perturbation. The method of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21], extends to models for which the eigenvalues are degenerate, and applies to models for which the potential is not sign definite [20] in dimensions d \geq 1 .</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/jst/336</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-039X
ispartof Journal of spectral theory, 2021-01, Vol.11 (1), p.63-89
issn 1664-039X
1664-0403
language eng
recordid cdi_gale_infotracacademiconefile_A656773739
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Mathematical research
Perturbation (Mathematics)
Schrodinger equation
title Decorrelation estimates for random Schrödinger operators with non rank one perturbations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decorrelation%20estimates%20for%20random%20Schr%C3%B6dinger%20operators%20with%20non%20rank%20one%20perturbations&rft.jtitle=Journal%20of%20spectral%20theory&rft.au=Hislop,%20Peter%20D.&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=63&rft.epage=89&rft.pages=63-89&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171/jst/336&rft_dat=%3Cgale_cross%3EA656773739%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A656773739&rfr_iscdi=true