Decorrelation estimates for random Schrödinger operators with non rank one perturbations
We prove decorrelation estimates for generalized lattice Anderson models on \mathbb Z^d constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics \xi^\omega_{E} and \xi^\omega_{E'} , associated with two energies E and...
Gespeichert in:
Veröffentlicht in: | Journal of spectral theory 2021-01, Vol.11 (1), p.63-89 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 89 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Journal of spectral theory |
container_volume | 11 |
creator | Hislop, Peter D. Krishna, Maddaly Shirley, Christopher |
description | We prove decorrelation estimates for generalized lattice Anderson models on
\mathbb Z^d
constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics
\xi^\omega_{E}
and
\xi^\omega_{E'}
, associated with two energies
E
and
E'
in the localization region and satisfying
|E - E'| > 4d
, are independent. That is, if
I,J
are two bounded intervals, the random variables
\xi^\omega_{E}(I)
and
\xi^\omega_{E'}(J)
, are independent and distributed according to a compound Poisson distribution whose Lévy measure has finite support. We also prove that the extended Minami estimate implies that the eigenvalues in the localization region have multiplicity at most the rank of the perturbation. The method of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21], extends to models for which the eigenvalues are degenerate, and applies to models for which the potential is not sign definite [20] in dimensions
d \geq 1
. |
doi_str_mv | 10.4171/jst/336 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A656773739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656773739</galeid><sourcerecordid>A656773739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-227d6983bdcede5a71d23744f6a610272a907ab591e91b52fcfed32f165350133</originalsourceid><addsrcrecordid>eNo1UMtKQzEQDaJgqcVfyM7VbfO4Scyy1CcUXKigq0tuMmlT2xtJIuKP-QP-mNEqs5jhnDmHmYPQKSXTlio62-Qy41weoBGVsm1IS_jh_8z10zGa5LwhhFREVW6Eni_AxpRga0qIA4Zcws4UyNjHhJMZXNzhe7tOX58uDCtIOL5CMiWmjN9DWeOhiuraC44D4EqVt9T_WuUTdOTNNsPkr4_R49Xlw-KmWd5d3y7my8YyoUvDmHJSn_PeWXAgjKKOcdW2XhpJCVPMaKJMLzQFTXvBvPXgOPNUCi4I5XyMpnvfldlCFwYfSzK2loNdsPUsHyo-l0IqxRXXVXC2F9gUc07gu9dUn04fHSXdT4pdTbGrKfJvOxJm2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decorrelation estimates for random Schrödinger operators with non rank one perturbations</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hislop, Peter D. ; Krishna, Maddaly ; Shirley, Christopher</creator><creatorcontrib>Hislop, Peter D. ; Krishna, Maddaly ; Shirley, Christopher</creatorcontrib><description>We prove decorrelation estimates for generalized lattice Anderson models on
\mathbb Z^d
constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics
\xi^\omega_{E}
and
\xi^\omega_{E'}
, associated with two energies
E
and
E'
in the localization region and satisfying
|E - E'| > 4d
, are independent. That is, if
I,J
are two bounded intervals, the random variables
\xi^\omega_{E}(I)
and
\xi^\omega_{E'}(J)
, are independent and distributed according to a compound Poisson distribution whose Lévy measure has finite support. We also prove that the extended Minami estimate implies that the eigenvalues in the localization region have multiplicity at most the rank of the perturbation. The method of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21], extends to models for which the eigenvalues are degenerate, and applies to models for which the potential is not sign definite [20] in dimensions
d \geq 1
.</description><identifier>ISSN: 1664-039X</identifier><identifier>EISSN: 1664-0403</identifier><identifier>DOI: 10.4171/jst/336</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Mathematical research ; Perturbation (Mathematics) ; Schrodinger equation</subject><ispartof>Journal of spectral theory, 2021-01, Vol.11 (1), p.63-89</ispartof><rights>COPYRIGHT 2021 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Hislop, Peter D.</creatorcontrib><creatorcontrib>Krishna, Maddaly</creatorcontrib><creatorcontrib>Shirley, Christopher</creatorcontrib><title>Decorrelation estimates for random Schrödinger operators with non rank one perturbations</title><title>Journal of spectral theory</title><description>We prove decorrelation estimates for generalized lattice Anderson models on
\mathbb Z^d
constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics
\xi^\omega_{E}
and
\xi^\omega_{E'}
, associated with two energies
E
and
E'
in the localization region and satisfying
|E - E'| > 4d
, are independent. That is, if
I,J
are two bounded intervals, the random variables
\xi^\omega_{E}(I)
and
\xi^\omega_{E'}(J)
, are independent and distributed according to a compound Poisson distribution whose Lévy measure has finite support. We also prove that the extended Minami estimate implies that the eigenvalues in the localization region have multiplicity at most the rank of the perturbation. The method of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21], extends to models for which the eigenvalues are degenerate, and applies to models for which the potential is not sign definite [20] in dimensions
d \geq 1
.</description><subject>Mathematical research</subject><subject>Perturbation (Mathematics)</subject><subject>Schrodinger equation</subject><issn>1664-039X</issn><issn>1664-0403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo1UMtKQzEQDaJgqcVfyM7VbfO4Scyy1CcUXKigq0tuMmlT2xtJIuKP-QP-mNEqs5jhnDmHmYPQKSXTlio62-Qy41weoBGVsm1IS_jh_8z10zGa5LwhhFREVW6Eni_AxpRga0qIA4Zcws4UyNjHhJMZXNzhe7tOX58uDCtIOL5CMiWmjN9DWeOhiuraC44D4EqVt9T_WuUTdOTNNsPkr4_R49Xlw-KmWd5d3y7my8YyoUvDmHJSn_PeWXAgjKKOcdW2XhpJCVPMaKJMLzQFTXvBvPXgOPNUCi4I5XyMpnvfldlCFwYfSzK2loNdsPUsHyo-l0IqxRXXVXC2F9gUc07gu9dUn04fHSXdT4pdTbGrKfJvOxJm2A</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hislop, Peter D.</creator><creator>Krishna, Maddaly</creator><creator>Shirley, Christopher</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Decorrelation estimates for random Schrödinger operators with non rank one perturbations</title><author>Hislop, Peter D. ; Krishna, Maddaly ; Shirley, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-227d6983bdcede5a71d23744f6a610272a907ab591e91b52fcfed32f165350133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical research</topic><topic>Perturbation (Mathematics)</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hislop, Peter D.</creatorcontrib><creatorcontrib>Krishna, Maddaly</creatorcontrib><creatorcontrib>Shirley, Christopher</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of spectral theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hislop, Peter D.</au><au>Krishna, Maddaly</au><au>Shirley, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decorrelation estimates for random Schrödinger operators with non rank one perturbations</atitle><jtitle>Journal of spectral theory</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>63</spage><epage>89</epage><pages>63-89</pages><issn>1664-039X</issn><eissn>1664-0403</eissn><abstract>We prove decorrelation estimates for generalized lattice Anderson models on
\mathbb Z^d
constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied to prove that the local eigenvalue statistics
\xi^\omega_{E}
and
\xi^\omega_{E'}
, associated with two energies
E
and
E'
in the localization region and satisfying
|E - E'| > 4d
, are independent. That is, if
I,J
are two bounded intervals, the random variables
\xi^\omega_{E}(I)
and
\xi^\omega_{E'}(J)
, are independent and distributed according to a compound Poisson distribution whose Lévy measure has finite support. We also prove that the extended Minami estimate implies that the eigenvalues in the localization region have multiplicity at most the rank of the perturbation. The method of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21], extends to models for which the eigenvalues are degenerate, and applies to models for which the potential is not sign definite [20] in dimensions
d \geq 1
.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/jst/336</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-039X |
ispartof | Journal of spectral theory, 2021-01, Vol.11 (1), p.63-89 |
issn | 1664-039X 1664-0403 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A656773739 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Mathematical research Perturbation (Mathematics) Schrodinger equation |
title | Decorrelation estimates for random Schrödinger operators with non rank one perturbations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A41%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decorrelation%20estimates%20for%20random%20Schr%C3%B6dinger%20operators%20with%20non%20rank%20one%20perturbations&rft.jtitle=Journal%20of%20spectral%20theory&rft.au=Hislop,%20Peter%20D.&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=63&rft.epage=89&rft.pages=63-89&rft.issn=1664-039X&rft.eissn=1664-0403&rft_id=info:doi/10.4171/jst/336&rft_dat=%3Cgale_cross%3EA656773739%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A656773739&rfr_iscdi=true |