Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles
We examined whether transcranial magnetic stimulation (TMS) delivered to the motor cortex allows assessment of muscle relaxation rates in unfatigued and fatigued knee extensors (KE). We assessed the ability of this technique to measure time course of fatigue-induced changes in muscle relaxation rate...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2021-01, Vol.239 (1), p.205-216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 216 |
---|---|
container_issue | 1 |
container_start_page | 205 |
container_title | Experimental brain research |
container_volume | 239 |
creator | Vernillo, Gianluca Khassetarash, Arash Millet, Guillaume Y. Temesi, John |
description | We examined whether transcranial magnetic stimulation (TMS) delivered to the motor cortex allows assessment of muscle relaxation rates in unfatigued and fatigued knee extensors (KE). We assessed the ability of this technique to measure time course of fatigue-induced changes in muscle relaxation rate and compared relaxation rate from resting twitches evoked by femoral nerve stimulation. Twelve healthy men performed maximal voluntary isometric contractions (MVC) twice before (PRE) and once at the end of a 2-min KE MVC and five more times within 8 min during recovery. Relative (intraclass correlation coefficient; ICC
2,1
) and absolute (repeatability coefficient) reliability and variability (coefficient of variation) were assessed. Time course of fatigue-induced changes in muscle relaxation rate was tested with generalized estimating equations. In unfatigued KE, peak relaxation rate coefficient of variation and repeatability coefficient were similar for both techniques. Mean (95% CI) ICC
2,1
for peak relaxation rates were 0.933 (0.724–0.982) and 0.889 (0.603–0.968) for TMS and femoral nerve stimulation, respectively. TMS-induced normalized muscle relaxation rate was − 11.5 ± 2.5 s
−1
at PRE, decreased to − 6.9 ± 1.2 s
−1
(− 37 ± 17%,
P
|
doi_str_mv | 10.1007/s00221-020-05921-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_sprin</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A651957192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651957192</galeid><sourcerecordid>A651957192</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-d23d4c5a557de36857f87dbfb04aceff3e0130edcd2b5f825ff45ca53502dfee3</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rj6BXyQgCCKdE2aZtq-CMvgn4UFQd3nkElvOlnbZO1Ndf323tmu44yISKFNbn_ntjn3ZNljwU8E59Ur5LwoRM4LnnPV0Kq5ky1EKYtcCL68my04F2Ve1qI5yh4gXm63suL3syMpRclFUyyydIHAomNpNAEt3bzp2WC6AMlbhskPU2-Sj4GlyAwiILIRenM9F0eTAJkPbAqOKt0ELTOhZbvNlwCQw3WCgHFkw4S2B3yY3XOmR3h0-zzOLt6--bx6n59_eHe2Oj3P7ZIvU94Wsi2tMkpVLchlrSpXV-3arXlpLDgngQvJobVtsVauLpRzpbJGScWL1gHI4-z13PdqWg_EQaBj9vpq9IMZf-hovD58E_xGd_Gbrup66xQ1eH7bYIxfJ8CkB48W-t4EiBPqolRVUam6kYQ-_QO9jNMY6HhE1U0p60btUZ3pQfvgIn3Xbpvq06USjapoKkSd_IWiq4XB2xjAeaofCF4cCIhJZHpnJkR99unjIftsj92A6dMGYz9t54mHYDGDdoyII7idcYLrbQD1HEBNAdQ3AdQNiZ7sW76T_EocAS9n4Duso0PrIVjYYZxzRdY3dUUrXhJd_z-98ukmlas4hURSOUuR8NDB-Hsg__j_n9ElB6o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489438953</pqid></control><display><type>article</type><title>Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>SpringerLink Journals - AutoHoldings</source><creator>Vernillo, Gianluca ; Khassetarash, Arash ; Millet, Guillaume Y. ; Temesi, John</creator><creatorcontrib>Vernillo, Gianluca ; Khassetarash, Arash ; Millet, Guillaume Y. ; Temesi, John</creatorcontrib><description>We examined whether transcranial magnetic stimulation (TMS) delivered to the motor cortex allows assessment of muscle relaxation rates in unfatigued and fatigued knee extensors (KE). We assessed the ability of this technique to measure time course of fatigue-induced changes in muscle relaxation rate and compared relaxation rate from resting twitches evoked by femoral nerve stimulation. Twelve healthy men performed maximal voluntary isometric contractions (MVC) twice before (PRE) and once at the end of a 2-min KE MVC and five more times within 8 min during recovery. Relative (intraclass correlation coefficient; ICC
2,1
) and absolute (repeatability coefficient) reliability and variability (coefficient of variation) were assessed. Time course of fatigue-induced changes in muscle relaxation rate was tested with generalized estimating equations. In unfatigued KE, peak relaxation rate coefficient of variation and repeatability coefficient were similar for both techniques. Mean (95% CI) ICC
2,1
for peak relaxation rates were 0.933 (0.724–0.982) and 0.889 (0.603–0.968) for TMS and femoral nerve stimulation, respectively. TMS-induced normalized muscle relaxation rate was − 11.5 ± 2.5 s
−1
at PRE, decreased to − 6.9 ± 1.2 s
−1
(− 37 ± 17%,
P
< 0.001), and recovered by 2 min post-exercise. Normalized peak relaxation rate for resting twitch did not show a fatigue-induced change. During fatiguing KE exercise, the change in muscle relaxation rate as determined by the two techniques was different. TMS provides reliable values of muscle relaxation rates. Furthermore, it is sufficiently sensitive and more appropriate than the resting twitch evoked by femoral nerve stimulation to reveal fatigue-induced changes in KE.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-020-05921-9</identifier><identifier>PMID: 33140192</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Cortex (motor) ; Extremities, Lower ; Fatigue ; Femur ; Knee ; Leg ; Life Sciences & Biomedicine ; Magnetic brain stimulation ; Magnetic fields ; Motor cortex ; Muscle contraction ; Muscle relaxation ; Muscles ; Neurology ; Neurosciences ; Neurosciences & Neurology ; Physiological aspects ; Physiological research ; Research Article ; Science & Technology ; Transcranial magnetic stimulation</subject><ispartof>Experimental brain research, 2021-01, Vol.239 (1), p.205-216</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000584398700004</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c606t-d23d4c5a557de36857f87dbfb04aceff3e0130edcd2b5f825ff45ca53502dfee3</citedby><cites>FETCH-LOGICAL-c606t-d23d4c5a557de36857f87dbfb04aceff3e0130edcd2b5f825ff45ca53502dfee3</cites><orcidid>0000-0002-5086-6350 ; 0000-0003-1945-1226 ; 0000-0002-6395-0762 ; 0000-0003-2580-4470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-020-05921-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-020-05921-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,39263,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33140192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vernillo, Gianluca</creatorcontrib><creatorcontrib>Khassetarash, Arash</creatorcontrib><creatorcontrib>Millet, Guillaume Y.</creatorcontrib><creatorcontrib>Temesi, John</creatorcontrib><title>Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>EXP BRAIN RES</addtitle><addtitle>Exp Brain Res</addtitle><description>We examined whether transcranial magnetic stimulation (TMS) delivered to the motor cortex allows assessment of muscle relaxation rates in unfatigued and fatigued knee extensors (KE). We assessed the ability of this technique to measure time course of fatigue-induced changes in muscle relaxation rate and compared relaxation rate from resting twitches evoked by femoral nerve stimulation. Twelve healthy men performed maximal voluntary isometric contractions (MVC) twice before (PRE) and once at the end of a 2-min KE MVC and five more times within 8 min during recovery. Relative (intraclass correlation coefficient; ICC
2,1
) and absolute (repeatability coefficient) reliability and variability (coefficient of variation) were assessed. Time course of fatigue-induced changes in muscle relaxation rate was tested with generalized estimating equations. In unfatigued KE, peak relaxation rate coefficient of variation and repeatability coefficient were similar for both techniques. Mean (95% CI) ICC
2,1
for peak relaxation rates were 0.933 (0.724–0.982) and 0.889 (0.603–0.968) for TMS and femoral nerve stimulation, respectively. TMS-induced normalized muscle relaxation rate was − 11.5 ± 2.5 s
−1
at PRE, decreased to − 6.9 ± 1.2 s
−1
(− 37 ± 17%,
P
< 0.001), and recovered by 2 min post-exercise. Normalized peak relaxation rate for resting twitch did not show a fatigue-induced change. During fatiguing KE exercise, the change in muscle relaxation rate as determined by the two techniques was different. TMS provides reliable values of muscle relaxation rates. Furthermore, it is sufficiently sensitive and more appropriate than the resting twitch evoked by femoral nerve stimulation to reveal fatigue-induced changes in KE.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cortex (motor)</subject><subject>Extremities, Lower</subject><subject>Fatigue</subject><subject>Femur</subject><subject>Knee</subject><subject>Leg</subject><subject>Life Sciences & Biomedicine</subject><subject>Magnetic brain stimulation</subject><subject>Magnetic fields</subject><subject>Motor cortex</subject><subject>Muscle contraction</subject><subject>Muscle relaxation</subject><subject>Muscles</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Physiological aspects</subject><subject>Physiological research</subject><subject>Research Article</subject><subject>Science & Technology</subject><subject>Transcranial magnetic stimulation</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl-L1DAUxYso7rj6BXyQgCCKdE2aZtq-CMvgn4UFQd3nkElvOlnbZO1Ndf323tmu44yISKFNbn_ntjn3ZNljwU8E59Ur5LwoRM4LnnPV0Kq5ky1EKYtcCL68my04F2Ve1qI5yh4gXm63suL3syMpRclFUyyydIHAomNpNAEt3bzp2WC6AMlbhskPU2-Sj4GlyAwiILIRenM9F0eTAJkPbAqOKt0ELTOhZbvNlwCQw3WCgHFkw4S2B3yY3XOmR3h0-zzOLt6--bx6n59_eHe2Oj3P7ZIvU94Wsi2tMkpVLchlrSpXV-3arXlpLDgngQvJobVtsVauLpRzpbJGScWL1gHI4-z13PdqWg_EQaBj9vpq9IMZf-hovD58E_xGd_Gbrup66xQ1eH7bYIxfJ8CkB48W-t4EiBPqolRVUam6kYQ-_QO9jNMY6HhE1U0p60btUZ3pQfvgIn3Xbpvq06USjapoKkSd_IWiq4XB2xjAeaofCF4cCIhJZHpnJkR99unjIftsj92A6dMGYz9t54mHYDGDdoyII7idcYLrbQD1HEBNAdQ3AdQNiZ7sW76T_EocAS9n4Duso0PrIVjYYZxzRdY3dUUrXhJd_z-98ukmlas4hURSOUuR8NDB-Hsg__j_n9ElB6o</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Vernillo, Gianluca</creator><creator>Khassetarash, Arash</creator><creator>Millet, Guillaume Y.</creator><creator>Temesi, John</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5086-6350</orcidid><orcidid>https://orcid.org/0000-0003-1945-1226</orcidid><orcidid>https://orcid.org/0000-0002-6395-0762</orcidid><orcidid>https://orcid.org/0000-0003-2580-4470</orcidid></search><sort><creationdate>20210101</creationdate><title>Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles</title><author>Vernillo, Gianluca ; Khassetarash, Arash ; Millet, Guillaume Y. ; Temesi, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-d23d4c5a557de36857f87dbfb04aceff3e0130edcd2b5f825ff45ca53502dfee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cortex (motor)</topic><topic>Extremities, Lower</topic><topic>Fatigue</topic><topic>Femur</topic><topic>Knee</topic><topic>Leg</topic><topic>Life Sciences & Biomedicine</topic><topic>Magnetic brain stimulation</topic><topic>Magnetic fields</topic><topic>Motor cortex</topic><topic>Muscle contraction</topic><topic>Muscle relaxation</topic><topic>Muscles</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Physiological aspects</topic><topic>Physiological research</topic><topic>Research Article</topic><topic>Science & Technology</topic><topic>Transcranial magnetic stimulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vernillo, Gianluca</creatorcontrib><creatorcontrib>Khassetarash, Arash</creatorcontrib><creatorcontrib>Millet, Guillaume Y.</creatorcontrib><creatorcontrib>Temesi, John</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vernillo, Gianluca</au><au>Khassetarash, Arash</au><au>Millet, Guillaume Y.</au><au>Temesi, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><stitle>EXP BRAIN RES</stitle><addtitle>Exp Brain Res</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>239</volume><issue>1</issue><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><abstract>We examined whether transcranial magnetic stimulation (TMS) delivered to the motor cortex allows assessment of muscle relaxation rates in unfatigued and fatigued knee extensors (KE). We assessed the ability of this technique to measure time course of fatigue-induced changes in muscle relaxation rate and compared relaxation rate from resting twitches evoked by femoral nerve stimulation. Twelve healthy men performed maximal voluntary isometric contractions (MVC) twice before (PRE) and once at the end of a 2-min KE MVC and five more times within 8 min during recovery. Relative (intraclass correlation coefficient; ICC
2,1
) and absolute (repeatability coefficient) reliability and variability (coefficient of variation) were assessed. Time course of fatigue-induced changes in muscle relaxation rate was tested with generalized estimating equations. In unfatigued KE, peak relaxation rate coefficient of variation and repeatability coefficient were similar for both techniques. Mean (95% CI) ICC
2,1
for peak relaxation rates were 0.933 (0.724–0.982) and 0.889 (0.603–0.968) for TMS and femoral nerve stimulation, respectively. TMS-induced normalized muscle relaxation rate was − 11.5 ± 2.5 s
−1
at PRE, decreased to − 6.9 ± 1.2 s
−1
(− 37 ± 17%,
P
< 0.001), and recovered by 2 min post-exercise. Normalized peak relaxation rate for resting twitch did not show a fatigue-induced change. During fatiguing KE exercise, the change in muscle relaxation rate as determined by the two techniques was different. TMS provides reliable values of muscle relaxation rates. Furthermore, it is sufficiently sensitive and more appropriate than the resting twitch evoked by femoral nerve stimulation to reveal fatigue-induced changes in KE.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33140192</pmid><doi>10.1007/s00221-020-05921-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5086-6350</orcidid><orcidid>https://orcid.org/0000-0003-1945-1226</orcidid><orcidid>https://orcid.org/0000-0002-6395-0762</orcidid><orcidid>https://orcid.org/0000-0003-2580-4470</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4819 |
ispartof | Experimental brain research, 2021-01, Vol.239 (1), p.205-216 |
issn | 0014-4819 1432-1106 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A651957192 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; SpringerLink Journals - AutoHoldings |
subjects | Biomedical and Life Sciences Biomedicine Cortex (motor) Extremities, Lower Fatigue Femur Knee Leg Life Sciences & Biomedicine Magnetic brain stimulation Magnetic fields Motor cortex Muscle contraction Muscle relaxation Muscles Neurology Neurosciences Neurosciences & Neurology Physiological aspects Physiological research Research Article Science & Technology Transcranial magnetic stimulation |
title | Use of transcranial magnetic stimulation to assess relaxation rates in unfatigued and fatigued knee-extensor muscles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20transcranial%20magnetic%20stimulation%20to%20assess%20relaxation%20rates%20in%20unfatigued%20and%20fatigued%20knee-extensor%20muscles&rft.jtitle=Experimental%20brain%20research&rft.au=Vernillo,%20Gianluca&rft.date=2021-01-01&rft.volume=239&rft.issue=1&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=0014-4819&rft.eissn=1432-1106&rft_id=info:doi/10.1007/s00221-020-05921-9&rft_dat=%3Cgale_sprin%3EA651957192%3C/gale_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489438953&rft_id=info:pmid/33140192&rft_galeid=A651957192&rfr_iscdi=true |