Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems
Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect m...
Gespeichert in:
Veröffentlicht in: | Oecologia 2020-12, Vol.194 (4), p.735-744 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 744 |
---|---|
container_issue | 4 |
container_start_page | 735 |
container_title | Oecologia |
container_volume | 194 |
creator | Avolio, Meghan L. Wilcox, Kevin R. Komatsu, Kimberly J. Lemoine, Nathan Bowman, William D. Collins, Scott L. Knapp, Alan K. Koerner, Sally E. Smith, Melinda D. Baer, Sara G. Gross, Katherine L. Isbell, Forest McLaren, Jennie Reich, Peter B. Suding, Katharine N. Suttle, K. Blake Tilman, David Xu, Zhuwen Yu, Qiang |
description | Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production in the future. |
doi_str_mv | 10.1007/s00442-020-04787-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A651084777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651084777</galeid><jstor_id>48696319</jstor_id><sourcerecordid>A651084777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-986e56db3636da1d3c852afc84b4298698712fd0915faf83a204779b9278beed3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7Fr9A4IS8Epkaj7mI3NZFj8KBUHrdchkzmyzzCRrkmmdK_-6Zzt1y4KI5CIhed5zcs57suwlo2eM0vp9pLQoeE45zWlRyzqvHmUrVgies0Y0j7MVpbzJZVk0J9mzGLeUsoKV5dPsRAgmaMPKVfbrCsadD3ogNzpY3drBpplYR3bBd5NJ1jtiI3E-EeNdtDGBS8NMdN-DSdCRdiabwbcYwFxrtwHSBXsDIRJtgo-RXENotQE_xbzzo3V6LwLj44yhxvg8e9LrIcKL-_00-_7xw9X6c3755dPF-vwyN2XBU97ICsqqa0Ulqk6zThhZct0bWbQFx8dG1oz33b6mXvdSaI4dqZu24bVsATpxmr1Z4mJdPyaISW39FBymVLyohah5KekDtdEDKOt6n4I2o41GnVcloxKD1kid_YXC1cFosUvQW7w_Erw9EiCT4Gfa6ClGdfHt6zHLF_aufQF6tQt21GFWjKq97WqxXaHt6s52VaHo9X11UztCd5D88RmBdwtwC63vo7HgDBwwSmkpBf6hwhNlSMv_p9c26f2YrP3kEkrFIo2I4ziEhz7_8_-vFtU2Jh8OmQo0thI4zL8Bf2HiXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473372580</pqid></control><display><type>article</type><title>Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Avolio, Meghan L. ; Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Lemoine, Nathan ; Bowman, William D. ; Collins, Scott L. ; Knapp, Alan K. ; Koerner, Sally E. ; Smith, Melinda D. ; Baer, Sara G. ; Gross, Katherine L. ; Isbell, Forest ; McLaren, Jennie ; Reich, Peter B. ; Suding, Katharine N. ; Suttle, K. Blake ; Tilman, David ; Xu, Zhuwen ; Yu, Qiang</creator><creatorcontrib>Avolio, Meghan L. ; Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Lemoine, Nathan ; Bowman, William D. ; Collins, Scott L. ; Knapp, Alan K. ; Koerner, Sally E. ; Smith, Melinda D. ; Baer, Sara G. ; Gross, Katherine L. ; Isbell, Forest ; McLaren, Jennie ; Reich, Peter B. ; Suding, Katharine N. ; Suttle, K. Blake ; Tilman, David ; Xu, Zhuwen ; Yu, Qiang</creatorcontrib><description>Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production in the future.</description><identifier>ISSN: 0029-8549</identifier><identifier>EISSN: 1432-1939</identifier><identifier>DOI: 10.1007/s00442-020-04787-6</identifier><identifier>PMID: 33130915</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Science + Business Media</publisher><subject>Analysis ; Annual precipitation ; Annual variations ; Automobile drivers ; Biomedical and Life Sciences ; Coefficient of variation ; Drought ; Droughts ; Ecological function ; Ecology ; Ecosystem ; ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH ; Ecosystems ; Environmental Sciences & Ecology ; Herbivores ; Hydrology/Water Resources ; Life Sciences ; Life Sciences & Biomedicine ; Mineral nutrients ; Net Primary Productivity ; Nutrients ; Plant communities ; Plant Sciences ; Plants ; Poaceae ; Precipitation ; Precipitation variability ; Predictive maintenance ; Primary production ; Rain ; Reliability ; Reproducibility of Results ; Science & Technology ; Temporal variations ; Variability</subject><ispartof>Oecologia, 2020-12, Vol.194 (4), p.735-744</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>11</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000583651600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c542t-986e56db3636da1d3c852afc84b4298698712fd0915faf83a204779b9278beed3</citedby><cites>FETCH-LOGICAL-c542t-986e56db3636da1d3c852afc84b4298698712fd0915faf83a204779b9278beed3</cites><orcidid>0000-0002-2649-9159 ; 0000-0002-0193-2892 ; 0000-0001-9689-769X ; 0000-0001-6829-1148 ; 0000-0001-6403-7513 ; 0000-0002-5480-0623 ; 0000-0001-7056-4547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48696319$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48696319$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,27929,27930,28253,41493,42562,51324,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33130915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Avolio, Meghan L.</creatorcontrib><creatorcontrib>Wilcox, Kevin R.</creatorcontrib><creatorcontrib>Komatsu, Kimberly J.</creatorcontrib><creatorcontrib>Lemoine, Nathan</creatorcontrib><creatorcontrib>Bowman, William D.</creatorcontrib><creatorcontrib>Collins, Scott L.</creatorcontrib><creatorcontrib>Knapp, Alan K.</creatorcontrib><creatorcontrib>Koerner, Sally E.</creatorcontrib><creatorcontrib>Smith, Melinda D.</creatorcontrib><creatorcontrib>Baer, Sara G.</creatorcontrib><creatorcontrib>Gross, Katherine L.</creatorcontrib><creatorcontrib>Isbell, Forest</creatorcontrib><creatorcontrib>McLaren, Jennie</creatorcontrib><creatorcontrib>Reich, Peter B.</creatorcontrib><creatorcontrib>Suding, Katharine N.</creatorcontrib><creatorcontrib>Suttle, K. Blake</creatorcontrib><creatorcontrib>Tilman, David</creatorcontrib><creatorcontrib>Xu, Zhuwen</creatorcontrib><creatorcontrib>Yu, Qiang</creatorcontrib><title>Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems</title><title>Oecologia</title><addtitle>Oecologia</addtitle><addtitle>OECOLOGIA</addtitle><addtitle>Oecologia</addtitle><description>Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production in the future.</description><subject>Analysis</subject><subject>Annual precipitation</subject><subject>Annual variations</subject><subject>Automobile drivers</subject><subject>Biomedical and Life Sciences</subject><subject>Coefficient of variation</subject><subject>Drought</subject><subject>Droughts</subject><subject>Ecological function</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH</subject><subject>Ecosystems</subject><subject>Environmental Sciences & Ecology</subject><subject>Herbivores</subject><subject>Hydrology/Water Resources</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Mineral nutrients</subject><subject>Net Primary Productivity</subject><subject>Nutrients</subject><subject>Plant communities</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Poaceae</subject><subject>Precipitation</subject><subject>Precipitation variability</subject><subject>Predictive maintenance</subject><subject>Primary production</subject><subject>Rain</subject><subject>Reliability</subject><subject>Reproducibility of Results</subject><subject>Science & Technology</subject><subject>Temporal variations</subject><subject>Variability</subject><issn>0029-8549</issn><issn>1432-1939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1rFDEUhgdR7Fr9A4IS8Epkaj7mI3NZFj8KBUHrdchkzmyzzCRrkmmdK_-6Zzt1y4KI5CIhed5zcs57suwlo2eM0vp9pLQoeE45zWlRyzqvHmUrVgies0Y0j7MVpbzJZVk0J9mzGLeUsoKV5dPsRAgmaMPKVfbrCsadD3ogNzpY3drBpplYR3bBd5NJ1jtiI3E-EeNdtDGBS8NMdN-DSdCRdiabwbcYwFxrtwHSBXsDIRJtgo-RXENotQE_xbzzo3V6LwLj44yhxvg8e9LrIcKL-_00-_7xw9X6c3755dPF-vwyN2XBU97ICsqqa0Ulqk6zThhZct0bWbQFx8dG1oz33b6mXvdSaI4dqZu24bVsATpxmr1Z4mJdPyaISW39FBymVLyohah5KekDtdEDKOt6n4I2o41GnVcloxKD1kid_YXC1cFosUvQW7w_Erw9EiCT4Gfa6ClGdfHt6zHLF_aufQF6tQt21GFWjKq97WqxXaHt6s52VaHo9X11UztCd5D88RmBdwtwC63vo7HgDBwwSmkpBf6hwhNlSMv_p9c26f2YrP3kEkrFIo2I4ziEhz7_8_-vFtU2Jh8OmQo0thI4zL8Bf2HiXg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Avolio, Meghan L.</creator><creator>Wilcox, Kevin R.</creator><creator>Komatsu, Kimberly J.</creator><creator>Lemoine, Nathan</creator><creator>Bowman, William D.</creator><creator>Collins, Scott L.</creator><creator>Knapp, Alan K.</creator><creator>Koerner, Sally E.</creator><creator>Smith, Melinda D.</creator><creator>Baer, Sara G.</creator><creator>Gross, Katherine L.</creator><creator>Isbell, Forest</creator><creator>McLaren, Jennie</creator><creator>Reich, Peter B.</creator><creator>Suding, Katharine N.</creator><creator>Suttle, K. Blake</creator><creator>Tilman, David</creator><creator>Xu, Zhuwen</creator><creator>Yu, Qiang</creator><general>Springer Science + Business Media</general><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-2649-9159</orcidid><orcidid>https://orcid.org/0000-0002-0193-2892</orcidid><orcidid>https://orcid.org/0000-0001-9689-769X</orcidid><orcidid>https://orcid.org/0000-0001-6829-1148</orcidid><orcidid>https://orcid.org/0000-0001-6403-7513</orcidid><orcidid>https://orcid.org/0000-0002-5480-0623</orcidid><orcidid>https://orcid.org/0000-0001-7056-4547</orcidid></search><sort><creationdate>20201201</creationdate><title>Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems</title><author>Avolio, Meghan L. ; Wilcox, Kevin R. ; Komatsu, Kimberly J. ; Lemoine, Nathan ; Bowman, William D. ; Collins, Scott L. ; Knapp, Alan K. ; Koerner, Sally E. ; Smith, Melinda D. ; Baer, Sara G. ; Gross, Katherine L. ; Isbell, Forest ; McLaren, Jennie ; Reich, Peter B. ; Suding, Katharine N. ; Suttle, K. Blake ; Tilman, David ; Xu, Zhuwen ; Yu, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-986e56db3636da1d3c852afc84b4298698712fd0915faf83a204779b9278beed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Annual precipitation</topic><topic>Annual variations</topic><topic>Automobile drivers</topic><topic>Biomedical and Life Sciences</topic><topic>Coefficient of variation</topic><topic>Drought</topic><topic>Droughts</topic><topic>Ecological function</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH</topic><topic>Ecosystems</topic><topic>Environmental Sciences & Ecology</topic><topic>Herbivores</topic><topic>Hydrology/Water Resources</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Mineral nutrients</topic><topic>Net Primary Productivity</topic><topic>Nutrients</topic><topic>Plant communities</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Poaceae</topic><topic>Precipitation</topic><topic>Precipitation variability</topic><topic>Predictive maintenance</topic><topic>Primary production</topic><topic>Rain</topic><topic>Reliability</topic><topic>Reproducibility of Results</topic><topic>Science & Technology</topic><topic>Temporal variations</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avolio, Meghan L.</creatorcontrib><creatorcontrib>Wilcox, Kevin R.</creatorcontrib><creatorcontrib>Komatsu, Kimberly J.</creatorcontrib><creatorcontrib>Lemoine, Nathan</creatorcontrib><creatorcontrib>Bowman, William D.</creatorcontrib><creatorcontrib>Collins, Scott L.</creatorcontrib><creatorcontrib>Knapp, Alan K.</creatorcontrib><creatorcontrib>Koerner, Sally E.</creatorcontrib><creatorcontrib>Smith, Melinda D.</creatorcontrib><creatorcontrib>Baer, Sara G.</creatorcontrib><creatorcontrib>Gross, Katherine L.</creatorcontrib><creatorcontrib>Isbell, Forest</creatorcontrib><creatorcontrib>McLaren, Jennie</creatorcontrib><creatorcontrib>Reich, Peter B.</creatorcontrib><creatorcontrib>Suding, Katharine N.</creatorcontrib><creatorcontrib>Suttle, K. Blake</creatorcontrib><creatorcontrib>Tilman, David</creatorcontrib><creatorcontrib>Xu, Zhuwen</creatorcontrib><creatorcontrib>Yu, Qiang</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Oecologia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avolio, Meghan L.</au><au>Wilcox, Kevin R.</au><au>Komatsu, Kimberly J.</au><au>Lemoine, Nathan</au><au>Bowman, William D.</au><au>Collins, Scott L.</au><au>Knapp, Alan K.</au><au>Koerner, Sally E.</au><au>Smith, Melinda D.</au><au>Baer, Sara G.</au><au>Gross, Katherine L.</au><au>Isbell, Forest</au><au>McLaren, Jennie</au><au>Reich, Peter B.</au><au>Suding, Katharine N.</au><au>Suttle, K. Blake</au><au>Tilman, David</au><au>Xu, Zhuwen</au><au>Yu, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems</atitle><jtitle>Oecologia</jtitle><stitle>Oecologia</stitle><stitle>OECOLOGIA</stitle><addtitle>Oecologia</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>194</volume><issue>4</issue><spage>735</spage><epage>744</epage><pages>735-744</pages><issn>0029-8549</issn><eissn>1432-1939</eissn><abstract>Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production in the future.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Science + Business Media</pub><pmid>33130915</pmid><doi>10.1007/s00442-020-04787-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2649-9159</orcidid><orcidid>https://orcid.org/0000-0002-0193-2892</orcidid><orcidid>https://orcid.org/0000-0001-9689-769X</orcidid><orcidid>https://orcid.org/0000-0001-6829-1148</orcidid><orcidid>https://orcid.org/0000-0001-6403-7513</orcidid><orcidid>https://orcid.org/0000-0002-5480-0623</orcidid><orcidid>https://orcid.org/0000-0001-7056-4547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-8549 |
ispartof | Oecologia, 2020-12, Vol.194 (4), p.735-744 |
issn | 0029-8549 1432-1939 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A651084777 |
source | MEDLINE; SpringerNature Journals; JSTOR Archive Collection A-Z Listing; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Analysis Annual precipitation Annual variations Automobile drivers Biomedical and Life Sciences Coefficient of variation Drought Droughts Ecological function Ecology Ecosystem ECOSYSTEM ECOLOGY - ORIGINAL RESEARCH Ecosystems Environmental Sciences & Ecology Herbivores Hydrology/Water Resources Life Sciences Life Sciences & Biomedicine Mineral nutrients Net Primary Productivity Nutrients Plant communities Plant Sciences Plants Poaceae Precipitation Precipitation variability Predictive maintenance Primary production Rain Reliability Reproducibility of Results Science & Technology Temporal variations Variability |
title | Temporal variability in production is not consistently affected by global change drivers across herbaceous-dominated ecosystems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20variability%20in%20production%20is%20not%20consistently%20affected%20by%20global%20change%20drivers%20across%20herbaceous-dominated%20ecosystems&rft.jtitle=Oecologia&rft.au=Avolio,%20Meghan%20L.&rft.date=2020-12-01&rft.volume=194&rft.issue=4&rft.spage=735&rft.epage=744&rft.pages=735-744&rft.issn=0029-8549&rft.eissn=1432-1939&rft_id=info:doi/10.1007/s00442-020-04787-6&rft_dat=%3Cgale_pubme%3EA651084777%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473372580&rft_id=info:pmid/33130915&rft_galeid=A651084777&rft_jstor_id=48696319&rfr_iscdi=true |