PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer

Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of translational medicine 2021-01, Vol.19 (1), p.12-12, Article 12
Hauptverfasser: Du, Lei, Gao, Yongli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 12
container_title Journal of translational medicine
container_volume 19
creator Du, Lei
Gao, Yongli
description Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells. Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 (GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice. Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted proliferation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10. Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting proliferation and accelerating apoptosis of PCa cells.
doi_str_mv 10.1186/s12967-020-02572-w
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A650590017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650590017</galeid><doaj_id>oai_doaj_org_article_f9c1eea91ed645909db525701dd5c8d1</doaj_id><sourcerecordid>A650590017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-4b3e559122f76bf285f3933037d9f9e8f5821f6914a05e647c8cdb57f43d72d23</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwB7hAkbhBQhm2488bpKqwMmkIxMe15fijc9XEnZ1S8e85WUdZERcoinLi87xvdE7eqnqO0TnGkr8pmCguGkQQ3EyQZvegOsVUqIZJwR_eq0-qJ6WsECKUUfW4OmlbigRT5LTSnxcfWTP7iuvYb0zMpe7jl0nT9N5FM3pXL95dYFTH4Tp2cYxpqM3gatPltIR2qTdQZF_K1Elhei0jNGprBuvz0-pRMOvin909z6rvF--_zT80V58Wl_PZVWMZb8eGdq1nTGFCguBdIJKFVrUtaoVTQXkZmCQ4cIWpQcxzKqy0rmMi0NYJ4kh7Vl3ufV0yK73JsTf5p04m6tuDlJfa5DHatddBWey9Udg7TplCCoxgfQg7x6x0GLze7r022w62YP0wZrM-Mj3uDPFaL9MPLYRUAisweHVnkNPN1pdR97FYv16bwadt0YQKjgmnigL68i90lbZ5gFVNlJQEcUX-UEsDA8QhJPiunUz1jDMEQyAsgDr_BwWX8320afAhwvmRgOwFFn5ayT4cZsRITxHT-4hpiJi-jZjegejF_e0cJL8zBcDrPbDzXQrFRg9BOGAIIY4kophDhadly_-n5xGiBUGbp-0wtr8Az9Xp6g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478820692</pqid></control><display><type>article</type><title>PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Du, Lei ; Gao, Yongli</creator><creatorcontrib>Du, Lei ; Gao, Yongli</creatorcontrib><description>Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells. Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 (GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice. Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted proliferation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10. Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting proliferation and accelerating apoptosis of PCa cells.</description><identifier>ISSN: 1479-5876</identifier><identifier>EISSN: 1479-5876</identifier><identifier>DOI: 10.1186/s12967-020-02572-w</identifier><identifier>PMID: 33407592</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Animals ; Antigens ; Antisense RNA ; Apoptosis ; Bone morphogenetic proteins ; Care and treatment ; Cell cycle ; Cell Line, Tumor ; Cell Proliferation ; Colorectal cancer ; Development and progression ; Expression vectors ; Fluorides ; GDF10 ; Gene expression ; Gene Expression Regulation, Neoplastic ; Genetic aspects ; Growth Differentiation Factor 10 ; Health aspects ; Humans ; Immunoprecipitation ; Laboratory animals ; Life Sciences &amp; Biomedicine ; Male ; Medical research ; Medicine, Research &amp; Experimental ; Metastasis ; Mice ; Mice, Nude ; MicroRNA-587 ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Non-coding RNA ; PGM5-AS1 ; Physiological aspects ; Plasmids ; Proliferation ; Prostate cancer ; Prostatic Neoplasms - genetics ; Proteins ; Reporter gene ; Research &amp; Experimental Medicine ; RNA ; RNA, Long Noncoding - genetics ; RNA-binding protein ; Science &amp; Technology ; Tumorigenicity ; Xenografts</subject><ispartof>Journal of translational medicine, 2021-01, Vol.19 (1), p.12-12, Article 12</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608041600011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c563t-4b3e559122f76bf285f3933037d9f9e8f5821f6914a05e647c8cdb57f43d72d23</citedby><cites>FETCH-LOGICAL-c563t-4b3e559122f76bf285f3933037d9f9e8f5821f6914a05e647c8cdb57f43d72d23</cites><orcidid>0000-0001-9765-5246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789719/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789719/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33407592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Lei</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><title>PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer</title><title>Journal of translational medicine</title><addtitle>J TRANSL MED</addtitle><addtitle>J Transl Med</addtitle><description>Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells. Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 (GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice. Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted proliferation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10. Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting proliferation and accelerating apoptosis of PCa cells.</description><subject>Animals</subject><subject>Antigens</subject><subject>Antisense RNA</subject><subject>Apoptosis</subject><subject>Bone morphogenetic proteins</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Colorectal cancer</subject><subject>Development and progression</subject><subject>Expression vectors</subject><subject>Fluorides</subject><subject>GDF10</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic aspects</subject><subject>Growth Differentiation Factor 10</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Laboratory animals</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine, Research &amp; Experimental</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>MicroRNA-587</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Non-coding RNA</subject><subject>PGM5-AS1</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Proliferation</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Proteins</subject><subject>Reporter gene</subject><subject>Research &amp; Experimental Medicine</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA-binding protein</subject><subject>Science &amp; Technology</subject><subject>Tumorigenicity</subject><subject>Xenografts</subject><issn>1479-5876</issn><issn>1479-5876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwB7hAkbhBQhm2488bpKqwMmkIxMe15fijc9XEnZ1S8e85WUdZERcoinLi87xvdE7eqnqO0TnGkr8pmCguGkQQ3EyQZvegOsVUqIZJwR_eq0-qJ6WsECKUUfW4OmlbigRT5LTSnxcfWTP7iuvYb0zMpe7jl0nT9N5FM3pXL95dYFTH4Tp2cYxpqM3gatPltIR2qTdQZF_K1Elhei0jNGprBuvz0-pRMOvin909z6rvF--_zT80V58Wl_PZVWMZb8eGdq1nTGFCguBdIJKFVrUtaoVTQXkZmCQ4cIWpQcxzKqy0rmMi0NYJ4kh7Vl3ufV0yK73JsTf5p04m6tuDlJfa5DHatddBWey9Udg7TplCCoxgfQg7x6x0GLze7r022w62YP0wZrM-Mj3uDPFaL9MPLYRUAisweHVnkNPN1pdR97FYv16bwadt0YQKjgmnigL68i90lbZ5gFVNlJQEcUX-UEsDA8QhJPiunUz1jDMEQyAsgDr_BwWX8320afAhwvmRgOwFFn5ayT4cZsRITxHT-4hpiJi-jZjegejF_e0cJL8zBcDrPbDzXQrFRg9BOGAIIY4kophDhadly_-n5xGiBUGbp-0wtr8Az9Xp6g</recordid><startdate>20210106</startdate><enddate>20210106</enddate><creator>Du, Lei</creator><creator>Gao, Yongli</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9765-5246</orcidid></search><sort><creationdate>20210106</creationdate><title>PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer</title><author>Du, Lei ; Gao, Yongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-4b3e559122f76bf285f3933037d9f9e8f5821f6914a05e647c8cdb57f43d72d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Antisense RNA</topic><topic>Apoptosis</topic><topic>Bone morphogenetic proteins</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Colorectal cancer</topic><topic>Development and progression</topic><topic>Expression vectors</topic><topic>Fluorides</topic><topic>GDF10</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic aspects</topic><topic>Growth Differentiation Factor 10</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Laboratory animals</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine, Research &amp; Experimental</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>MicroRNA-587</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Non-coding RNA</topic><topic>PGM5-AS1</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Proliferation</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Proteins</topic><topic>Reporter gene</topic><topic>Research &amp; Experimental Medicine</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA-binding protein</topic><topic>Science &amp; Technology</topic><topic>Tumorigenicity</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Lei</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Lei</au><au>Gao, Yongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer</atitle><jtitle>Journal of translational medicine</jtitle><stitle>J TRANSL MED</stitle><addtitle>J Transl Med</addtitle><date>2021-01-06</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>12</spage><epage>12</epage><pages>12-12</pages><artnum>12</artnum><issn>1479-5876</issn><eissn>1479-5876</eissn><abstract>Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells. Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 (GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice. Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted proliferation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10. Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting proliferation and accelerating apoptosis of PCa cells.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>33407592</pmid><doi>10.1186/s12967-020-02572-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9765-5246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1479-5876
ispartof Journal of translational medicine, 2021-01, Vol.19 (1), p.12-12, Article 12
issn 1479-5876
1479-5876
language eng
recordid cdi_gale_infotracacademiconefile_A650590017
source MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals
subjects Animals
Antigens
Antisense RNA
Apoptosis
Bone morphogenetic proteins
Care and treatment
Cell cycle
Cell Line, Tumor
Cell Proliferation
Colorectal cancer
Development and progression
Expression vectors
Fluorides
GDF10
Gene expression
Gene Expression Regulation, Neoplastic
Genetic aspects
Growth Differentiation Factor 10
Health aspects
Humans
Immunoprecipitation
Laboratory animals
Life Sciences & Biomedicine
Male
Medical research
Medicine, Research & Experimental
Metastasis
Mice
Mice, Nude
MicroRNA-587
MicroRNAs
MicroRNAs - genetics
miRNA
Non-coding RNA
PGM5-AS1
Physiological aspects
Plasmids
Proliferation
Prostate cancer
Prostatic Neoplasms - genetics
Proteins
Reporter gene
Research & Experimental Medicine
RNA
RNA, Long Noncoding - genetics
RNA-binding protein
Science & Technology
Tumorigenicity
Xenografts
title PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PGM5-AS1%20impairs%20miR-587-mediated%20GDF10%20inhibition%20and%20abrogates%20progression%20of%20prostate%20cancer&rft.jtitle=Journal%20of%20translational%20medicine&rft.au=Du,%20Lei&rft.date=2021-01-06&rft.volume=19&rft.issue=1&rft.spage=12&rft.epage=12&rft.pages=12-12&rft.artnum=12&rft.issn=1479-5876&rft.eissn=1479-5876&rft_id=info:doi/10.1186/s12967-020-02572-w&rft_dat=%3Cgale_pubme%3EA650590017%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478820692&rft_id=info:pmid/33407592&rft_galeid=A650590017&rft_doaj_id=oai_doaj_org_article_f9c1eea91ed645909db525701dd5c8d1&rfr_iscdi=true