PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer
Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in th...
Gespeichert in:
Veröffentlicht in: | Journal of translational medicine 2021-01, Vol.19 (1), p.12-12, Article 12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 12 |
container_title | Journal of translational medicine |
container_volume | 19 |
creator | Du, Lei Gao, Yongli |
description | Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells.
Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 (GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice.
Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted proliferation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10.
Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting proliferation and accelerating apoptosis of PCa cells. |
doi_str_mv | 10.1186/s12967-020-02572-w |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A650590017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650590017</galeid><doaj_id>oai_doaj_org_article_f9c1eea91ed645909db525701dd5c8d1</doaj_id><sourcerecordid>A650590017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c563t-4b3e559122f76bf285f3933037d9f9e8f5821f6914a05e647c8cdb57f43d72d23</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwB7hAkbhBQhm2488bpKqwMmkIxMe15fijc9XEnZ1S8e85WUdZERcoinLi87xvdE7eqnqO0TnGkr8pmCguGkQQ3EyQZvegOsVUqIZJwR_eq0-qJ6WsECKUUfW4OmlbigRT5LTSnxcfWTP7iuvYb0zMpe7jl0nT9N5FM3pXL95dYFTH4Tp2cYxpqM3gatPltIR2qTdQZF_K1Elhei0jNGprBuvz0-pRMOvin909z6rvF--_zT80V58Wl_PZVWMZb8eGdq1nTGFCguBdIJKFVrUtaoVTQXkZmCQ4cIWpQcxzKqy0rmMi0NYJ4kh7Vl3ufV0yK73JsTf5p04m6tuDlJfa5DHatddBWey9Udg7TplCCoxgfQg7x6x0GLze7r022w62YP0wZrM-Mj3uDPFaL9MPLYRUAisweHVnkNPN1pdR97FYv16bwadt0YQKjgmnigL68i90lbZ5gFVNlJQEcUX-UEsDA8QhJPiunUz1jDMEQyAsgDr_BwWX8320afAhwvmRgOwFFn5ayT4cZsRITxHT-4hpiJi-jZjegejF_e0cJL8zBcDrPbDzXQrFRg9BOGAIIY4kophDhadly_-n5xGiBUGbp-0wtr8Az9Xp6g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478820692</pqid></control><display><type>article</type><title>PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Du, Lei ; Gao, Yongli</creator><creatorcontrib>Du, Lei ; Gao, Yongli</creatorcontrib><description>Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells.
Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 (GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice.
Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted proliferation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10.
Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting proliferation and accelerating apoptosis of PCa cells.</description><identifier>ISSN: 1479-5876</identifier><identifier>EISSN: 1479-5876</identifier><identifier>DOI: 10.1186/s12967-020-02572-w</identifier><identifier>PMID: 33407592</identifier><language>eng</language><publisher>LONDON: Springer Nature</publisher><subject>Animals ; Antigens ; Antisense RNA ; Apoptosis ; Bone morphogenetic proteins ; Care and treatment ; Cell cycle ; Cell Line, Tumor ; Cell Proliferation ; Colorectal cancer ; Development and progression ; Expression vectors ; Fluorides ; GDF10 ; Gene expression ; Gene Expression Regulation, Neoplastic ; Genetic aspects ; Growth Differentiation Factor 10 ; Health aspects ; Humans ; Immunoprecipitation ; Laboratory animals ; Life Sciences & Biomedicine ; Male ; Medical research ; Medicine, Research & Experimental ; Metastasis ; Mice ; Mice, Nude ; MicroRNA-587 ; MicroRNAs ; MicroRNAs - genetics ; miRNA ; Non-coding RNA ; PGM5-AS1 ; Physiological aspects ; Plasmids ; Proliferation ; Prostate cancer ; Prostatic Neoplasms - genetics ; Proteins ; Reporter gene ; Research & Experimental Medicine ; RNA ; RNA, Long Noncoding - genetics ; RNA-binding protein ; Science & Technology ; Tumorigenicity ; Xenografts</subject><ispartof>Journal of translational medicine, 2021-01, Vol.19 (1), p.12-12, Article 12</ispartof><rights>COPYRIGHT 2021 BioMed Central Ltd.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>21</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000608041600011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c563t-4b3e559122f76bf285f3933037d9f9e8f5821f6914a05e647c8cdb57f43d72d23</citedby><cites>FETCH-LOGICAL-c563t-4b3e559122f76bf285f3933037d9f9e8f5821f6914a05e647c8cdb57f43d72d23</cites><orcidid>0000-0001-9765-5246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789719/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789719/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33407592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Du, Lei</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><title>PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer</title><title>Journal of translational medicine</title><addtitle>J TRANSL MED</addtitle><addtitle>J Transl Med</addtitle><description>Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells.
Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 (GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice.
Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted proliferation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10.
Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting proliferation and accelerating apoptosis of PCa cells.</description><subject>Animals</subject><subject>Antigens</subject><subject>Antisense RNA</subject><subject>Apoptosis</subject><subject>Bone morphogenetic proteins</subject><subject>Care and treatment</subject><subject>Cell cycle</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Colorectal cancer</subject><subject>Development and progression</subject><subject>Expression vectors</subject><subject>Fluorides</subject><subject>GDF10</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic aspects</subject><subject>Growth Differentiation Factor 10</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Laboratory animals</subject><subject>Life Sciences & Biomedicine</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine, Research & Experimental</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>MicroRNA-587</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Non-coding RNA</subject><subject>PGM5-AS1</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Proliferation</subject><subject>Prostate cancer</subject><subject>Prostatic Neoplasms - genetics</subject><subject>Proteins</subject><subject>Reporter gene</subject><subject>Research & Experimental Medicine</subject><subject>RNA</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA-binding protein</subject><subject>Science & Technology</subject><subject>Tumorigenicity</subject><subject>Xenografts</subject><issn>1479-5876</issn><issn>1479-5876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwB7hAkbhBQhm2488bpKqwMmkIxMe15fijc9XEnZ1S8e85WUdZERcoinLi87xvdE7eqnqO0TnGkr8pmCguGkQQ3EyQZvegOsVUqIZJwR_eq0-qJ6WsECKUUfW4OmlbigRT5LTSnxcfWTP7iuvYb0zMpe7jl0nT9N5FM3pXL95dYFTH4Tp2cYxpqM3gatPltIR2qTdQZF_K1Elhei0jNGprBuvz0-pRMOvin909z6rvF--_zT80V58Wl_PZVWMZb8eGdq1nTGFCguBdIJKFVrUtaoVTQXkZmCQ4cIWpQcxzKqy0rmMi0NYJ4kh7Vl3ufV0yK73JsTf5p04m6tuDlJfa5DHatddBWey9Udg7TplCCoxgfQg7x6x0GLze7r022w62YP0wZrM-Mj3uDPFaL9MPLYRUAisweHVnkNPN1pdR97FYv16bwadt0YQKjgmnigL68i90lbZ5gFVNlJQEcUX-UEsDA8QhJPiunUz1jDMEQyAsgDr_BwWX8320afAhwvmRgOwFFn5ayT4cZsRITxHT-4hpiJi-jZjegejF_e0cJL8zBcDrPbDzXQrFRg9BOGAIIY4kophDhadly_-n5xGiBUGbp-0wtr8Az9Xp6g</recordid><startdate>20210106</startdate><enddate>20210106</enddate><creator>Du, Lei</creator><creator>Gao, Yongli</creator><general>Springer Nature</general><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9765-5246</orcidid></search><sort><creationdate>20210106</creationdate><title>PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer</title><author>Du, Lei ; Gao, Yongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c563t-4b3e559122f76bf285f3933037d9f9e8f5821f6914a05e647c8cdb57f43d72d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Antigens</topic><topic>Antisense RNA</topic><topic>Apoptosis</topic><topic>Bone morphogenetic proteins</topic><topic>Care and treatment</topic><topic>Cell cycle</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Colorectal cancer</topic><topic>Development and progression</topic><topic>Expression vectors</topic><topic>Fluorides</topic><topic>GDF10</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic aspects</topic><topic>Growth Differentiation Factor 10</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Laboratory animals</topic><topic>Life Sciences & Biomedicine</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine, Research & Experimental</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>MicroRNA-587</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Non-coding RNA</topic><topic>PGM5-AS1</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Proliferation</topic><topic>Prostate cancer</topic><topic>Prostatic Neoplasms - genetics</topic><topic>Proteins</topic><topic>Reporter gene</topic><topic>Research & Experimental Medicine</topic><topic>RNA</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA-binding protein</topic><topic>Science & Technology</topic><topic>Tumorigenicity</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Lei</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of translational medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Lei</au><au>Gao, Yongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer</atitle><jtitle>Journal of translational medicine</jtitle><stitle>J TRANSL MED</stitle><addtitle>J Transl Med</addtitle><date>2021-01-06</date><risdate>2021</risdate><volume>19</volume><issue>1</issue><spage>12</spage><epage>12</epage><pages>12-12</pages><artnum>12</artnum><issn>1479-5876</issn><eissn>1479-5876</eissn><abstract>Background: Prostate cancer (PCa) is a leading cause of cancer-related death in males. Aberrant expression of long non-coding RNAs (lncRNAs) has been implicated in various human malignancies, including PCa. This study aims to clarify the inhibitory role of human PGM5 antisense RNA 1 (PGM5-AS1) in the proliferation and apoptosis of PCa cells.
Methods: The regulatory network of PGM5-AS1/microRNA-587 (miR-587)/growth and differentiation factor 10 (GDF10) axis was examined by dual-luciferase reporter gene assay, RNA-binding protein immunoprecipitation, and RNA pull down assay. We manipulated the expression of PGM5-AS1, miR-587 and GDF10 by transducing expression vectors, mimic, inhibitor, or short hairpin RNA into PCa cells, thus establishing their functions in cell proliferation and apoptosis. Additionally, we measured the tumorigenicity of PCa cells xenografted in nude mice.
Results: PGM5-AS1 is expressed at low levels in PCa cell lines. Forced overexpression of PGM5-AS1 restricted proliferation and facilitated apoptosis of PCa cells, manifesting in suppressed xenograft tumor growth in nude mice. Notably, PGM5-AS1 competitively bound to miR-587, which directly targets GDF10. We further validated that the anti-cancer role of PGM5-AS1 in PCa cells was achieved by binding to miR-587 to promote the expression of GDF10.
Conclusion: PGM5-AS1 upregulates GDF10 gene expression by competitively binding to miR-587, thus inhibiting proliferation and accelerating apoptosis of PCa cells.</abstract><cop>LONDON</cop><pub>Springer Nature</pub><pmid>33407592</pmid><doi>10.1186/s12967-020-02572-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9765-5246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1479-5876 |
ispartof | Journal of translational medicine, 2021-01, Vol.19 (1), p.12-12, Article 12 |
issn | 1479-5876 1479-5876 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A650590017 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals |
subjects | Animals Antigens Antisense RNA Apoptosis Bone morphogenetic proteins Care and treatment Cell cycle Cell Line, Tumor Cell Proliferation Colorectal cancer Development and progression Expression vectors Fluorides GDF10 Gene expression Gene Expression Regulation, Neoplastic Genetic aspects Growth Differentiation Factor 10 Health aspects Humans Immunoprecipitation Laboratory animals Life Sciences & Biomedicine Male Medical research Medicine, Research & Experimental Metastasis Mice Mice, Nude MicroRNA-587 MicroRNAs MicroRNAs - genetics miRNA Non-coding RNA PGM5-AS1 Physiological aspects Plasmids Proliferation Prostate cancer Prostatic Neoplasms - genetics Proteins Reporter gene Research & Experimental Medicine RNA RNA, Long Noncoding - genetics RNA-binding protein Science & Technology Tumorigenicity Xenografts |
title | PGM5-AS1 impairs miR-587-mediated GDF10 inhibition and abrogates progression of prostate cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A41%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PGM5-AS1%20impairs%20miR-587-mediated%20GDF10%20inhibition%20and%20abrogates%20progression%20of%20prostate%20cancer&rft.jtitle=Journal%20of%20translational%20medicine&rft.au=Du,%20Lei&rft.date=2021-01-06&rft.volume=19&rft.issue=1&rft.spage=12&rft.epage=12&rft.pages=12-12&rft.artnum=12&rft.issn=1479-5876&rft.eissn=1479-5876&rft_id=info:doi/10.1186/s12967-020-02572-w&rft_dat=%3Cgale_pubme%3EA650590017%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478820692&rft_id=info:pmid/33407592&rft_galeid=A650590017&rft_doaj_id=oai_doaj_org_article_f9c1eea91ed645909db525701dd5c8d1&rfr_iscdi=true |