3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane

Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Petroleum chemistry 2020-11, Vol.60 (11), p.1251-1259
Hauptverfasser: Haghi, S. B., Salehi, G., Azad, M. T., Nichkoohi, A. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1259
container_issue 11
container_start_page 1251
container_title Petroleum chemistry
container_volume 60
creator Haghi, S. B.
Salehi, G.
Azad, M. T.
Nichkoohi, A. L.
description Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH 4 /H 2 O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH 4 /H 2 O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers.
doi_str_mv 10.1134/S0965544120110109
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A650475018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650475018</galeid><sourcerecordid>A650475018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ebbb058f6c294f8bff8c791dec145bc44764324a7488fd9a3d6fa994c277c6e33</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYMoOKc_wLv8gc6kSfpxOTvnhI0Np9clzUfNaJORthcT_O-mzjtBQghvznkOvAeAe4xmGBP6sEd5whilOEYYI4zyCzDBjLEoiUl-CSajHI36NbjpugNCOMWUTMAXWcBiuYAbJ1VjbA25lXB77E1rPnlvnIVOQw6LUxClN4I3cOe8Gzr4qCR8VVz0zkMd7uokvauVhTvv5CB-2KEbI_e94m3wBlc7ziFxo_oPbtUtuNK86dTd7zsF78unt2IVrbfPL8V8HQmS0D5SVVUhlulExDnVWaV1JtIcSyUwZZWgNE0oiSlPaZZpmXMiE83znIo4TUWiCJmC2Tm35o0qjdWu91yEI1VrhLNKm_A_TxiiKUM4CwA-A8K7rvNKl0dvWu5PJUblWHj5p_DAxGemC15bK18e3OBt2Osf6Bv_cYLL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Haghi, S. B. ; Salehi, G. ; Azad, M. T. ; Nichkoohi, A. L.</creator><creatorcontrib>Haghi, S. B. ; Salehi, G. ; Azad, M. T. ; Nichkoohi, A. L.</creatorcontrib><description>Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH 4 /H 2 O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH 4 /H 2 O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers.</description><identifier>ISSN: 0965-5441</identifier><identifier>EISSN: 1555-6239</identifier><identifier>DOI: 10.1134/S0965544120110109</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Fluid dynamics ; Industrial Chemistry/Chemical Engineering ; Methane ; Natural gas ; Petroleum refineries ; Porosity ; Production processes</subject><ispartof>Petroleum chemistry, 2020-11, Vol.60 (11), p.1251-1259</ispartof><rights>Pleiades Publishing, Ltd. 2020. ISSN 0965-5441, Petroleum Chemistry, 2020, Vol. 60, No. 11, pp. 1251–1259. © Pleiades Publishing, Ltd., 2020. Published in Russian in Neftekhimiya, 2020, Vol. 60, No. 6, pp. 793–801.</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ebbb058f6c294f8bff8c791dec145bc44764324a7488fd9a3d6fa994c277c6e33</citedby><cites>FETCH-LOGICAL-c364t-ebbb058f6c294f8bff8c791dec145bc44764324a7488fd9a3d6fa994c277c6e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965544120110109$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965544120110109$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Haghi, S. B.</creatorcontrib><creatorcontrib>Salehi, G.</creatorcontrib><creatorcontrib>Azad, M. T.</creatorcontrib><creatorcontrib>Nichkoohi, A. L.</creatorcontrib><title>3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane</title><title>Petroleum chemistry</title><addtitle>Pet. Chem</addtitle><description>Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH 4 /H 2 O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH 4 /H 2 O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Fluid dynamics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Methane</subject><subject>Natural gas</subject><subject>Petroleum refineries</subject><subject>Porosity</subject><subject>Production processes</subject><issn>0965-5441</issn><issn>1555-6239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAYhYMoOKc_wLv8gc6kSfpxOTvnhI0Np9clzUfNaJORthcT_O-mzjtBQghvznkOvAeAe4xmGBP6sEd5whilOEYYI4zyCzDBjLEoiUl-CSajHI36NbjpugNCOMWUTMAXWcBiuYAbJ1VjbA25lXB77E1rPnlvnIVOQw6LUxClN4I3cOe8Gzr4qCR8VVz0zkMd7uokvauVhTvv5CB-2KEbI_e94m3wBlc7ziFxo_oPbtUtuNK86dTd7zsF78unt2IVrbfPL8V8HQmS0D5SVVUhlulExDnVWaV1JtIcSyUwZZWgNE0oiSlPaZZpmXMiE83znIo4TUWiCJmC2Tm35o0qjdWu91yEI1VrhLNKm_A_TxiiKUM4CwA-A8K7rvNKl0dvWu5PJUblWHj5p_DAxGemC15bK18e3OBt2Osf6Bv_cYLL</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Haghi, S. B.</creator><creator>Salehi, G.</creator><creator>Azad, M. T.</creator><creator>Nichkoohi, A. L.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane</title><author>Haghi, S. B. ; Salehi, G. ; Azad, M. T. ; Nichkoohi, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ebbb058f6c294f8bff8c791dec145bc44764324a7488fd9a3d6fa994c277c6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Fluid dynamics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Methane</topic><topic>Natural gas</topic><topic>Petroleum refineries</topic><topic>Porosity</topic><topic>Production processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghi, S. B.</creatorcontrib><creatorcontrib>Salehi, G.</creatorcontrib><creatorcontrib>Azad, M. T.</creatorcontrib><creatorcontrib>Nichkoohi, A. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Petroleum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghi, S. B.</au><au>Salehi, G.</au><au>Azad, M. T.</au><au>Nichkoohi, A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane</atitle><jtitle>Petroleum chemistry</jtitle><stitle>Pet. Chem</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>60</volume><issue>11</issue><spage>1251</spage><epage>1259</epage><pages>1251-1259</pages><issn>0965-5441</issn><eissn>1555-6239</eissn><abstract>Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH 4 /H 2 O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH 4 /H 2 O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965544120110109</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5441
ispartof Petroleum chemistry, 2020-11, Vol.60 (11), p.1251-1259
issn 0965-5441
1555-6239
language eng
recordid cdi_gale_infotracacademiconefile_A650475018
source EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals
subjects Chemistry
Chemistry and Materials Science
Fluid dynamics
Industrial Chemistry/Chemical Engineering
Methane
Natural gas
Petroleum refineries
Porosity
Production processes
title 3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20CFD%20Modeling%20and%20Optimization%20of%20a%20Cylindrical%20Porous%20Bed%20Reactor%20for%20Hydrogen%20Production%20using%20Steam%20Reforming%20of%20Methane&rft.jtitle=Petroleum%20chemistry&rft.au=Haghi,%20S.%20B.&rft.date=2020-11-01&rft.volume=60&rft.issue=11&rft.spage=1251&rft.epage=1259&rft.pages=1251-1259&rft.issn=0965-5441&rft.eissn=1555-6239&rft_id=info:doi/10.1134/S0965544120110109&rft_dat=%3Cgale_cross%3EA650475018%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A650475018&rfr_iscdi=true