3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane
Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) mo...
Gespeichert in:
Veröffentlicht in: | Petroleum chemistry 2020-11, Vol.60 (11), p.1251-1259 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1259 |
---|---|
container_issue | 11 |
container_start_page | 1251 |
container_title | Petroleum chemistry |
container_volume | 60 |
creator | Haghi, S. B. Salehi, G. Azad, M. T. Nichkoohi, A. L. |
description | Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH
4
/H
2
O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH
4
/H
2
O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers. |
doi_str_mv | 10.1134/S0965544120110109 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A650475018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650475018</galeid><sourcerecordid>A650475018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ebbb058f6c294f8bff8c791dec145bc44764324a7488fd9a3d6fa994c277c6e33</originalsourceid><addsrcrecordid>eNp9kF1LwzAYhYMoOKc_wLv8gc6kSfpxOTvnhI0Np9clzUfNaJORthcT_O-mzjtBQghvznkOvAeAe4xmGBP6sEd5whilOEYYI4zyCzDBjLEoiUl-CSajHI36NbjpugNCOMWUTMAXWcBiuYAbJ1VjbA25lXB77E1rPnlvnIVOQw6LUxClN4I3cOe8Gzr4qCR8VVz0zkMd7uokvauVhTvv5CB-2KEbI_e94m3wBlc7ziFxo_oPbtUtuNK86dTd7zsF78unt2IVrbfPL8V8HQmS0D5SVVUhlulExDnVWaV1JtIcSyUwZZWgNE0oiSlPaZZpmXMiE83znIo4TUWiCJmC2Tm35o0qjdWu91yEI1VrhLNKm_A_TxiiKUM4CwA-A8K7rvNKl0dvWu5PJUblWHj5p_DAxGemC15bK18e3OBt2Osf6Bv_cYLL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Haghi, S. B. ; Salehi, G. ; Azad, M. T. ; Nichkoohi, A. L.</creator><creatorcontrib>Haghi, S. B. ; Salehi, G. ; Azad, M. T. ; Nichkoohi, A. L.</creatorcontrib><description>Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH
4
/H
2
O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH
4
/H
2
O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers.</description><identifier>ISSN: 0965-5441</identifier><identifier>EISSN: 1555-6239</identifier><identifier>DOI: 10.1134/S0965544120110109</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Fluid dynamics ; Industrial Chemistry/Chemical Engineering ; Methane ; Natural gas ; Petroleum refineries ; Porosity ; Production processes</subject><ispartof>Petroleum chemistry, 2020-11, Vol.60 (11), p.1251-1259</ispartof><rights>Pleiades Publishing, Ltd. 2020. ISSN 0965-5441, Petroleum Chemistry, 2020, Vol. 60, No. 11, pp. 1251–1259. © Pleiades Publishing, Ltd., 2020. Published in Russian in Neftekhimiya, 2020, Vol. 60, No. 6, pp. 793–801.</rights><rights>COPYRIGHT 2020 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ebbb058f6c294f8bff8c791dec145bc44764324a7488fd9a3d6fa994c277c6e33</citedby><cites>FETCH-LOGICAL-c364t-ebbb058f6c294f8bff8c791dec145bc44764324a7488fd9a3d6fa994c277c6e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965544120110109$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965544120110109$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Haghi, S. B.</creatorcontrib><creatorcontrib>Salehi, G.</creatorcontrib><creatorcontrib>Azad, M. T.</creatorcontrib><creatorcontrib>Nichkoohi, A. L.</creatorcontrib><title>3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane</title><title>Petroleum chemistry</title><addtitle>Pet. Chem</addtitle><description>Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH
4
/H
2
O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH
4
/H
2
O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Fluid dynamics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Methane</subject><subject>Natural gas</subject><subject>Petroleum refineries</subject><subject>Porosity</subject><subject>Production processes</subject><issn>0965-5441</issn><issn>1555-6239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAYhYMoOKc_wLv8gc6kSfpxOTvnhI0Np9clzUfNaJORthcT_O-mzjtBQghvznkOvAeAe4xmGBP6sEd5whilOEYYI4zyCzDBjLEoiUl-CSajHI36NbjpugNCOMWUTMAXWcBiuYAbJ1VjbA25lXB77E1rPnlvnIVOQw6LUxClN4I3cOe8Gzr4qCR8VVz0zkMd7uokvauVhTvv5CB-2KEbI_e94m3wBlc7ziFxo_oPbtUtuNK86dTd7zsF78unt2IVrbfPL8V8HQmS0D5SVVUhlulExDnVWaV1JtIcSyUwZZWgNE0oiSlPaZZpmXMiE83znIo4TUWiCJmC2Tm35o0qjdWu91yEI1VrhLNKm_A_TxiiKUM4CwA-A8K7rvNKl0dvWu5PJUblWHj5p_DAxGemC15bK18e3OBt2Osf6Bv_cYLL</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Haghi, S. B.</creator><creator>Salehi, G.</creator><creator>Azad, M. T.</creator><creator>Nichkoohi, A. L.</creator><general>Pleiades Publishing</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane</title><author>Haghi, S. B. ; Salehi, G. ; Azad, M. T. ; Nichkoohi, A. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ebbb058f6c294f8bff8c791dec145bc44764324a7488fd9a3d6fa994c277c6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Fluid dynamics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Methane</topic><topic>Natural gas</topic><topic>Petroleum refineries</topic><topic>Porosity</topic><topic>Production processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haghi, S. B.</creatorcontrib><creatorcontrib>Salehi, G.</creatorcontrib><creatorcontrib>Azad, M. T.</creatorcontrib><creatorcontrib>Nichkoohi, A. L.</creatorcontrib><collection>CrossRef</collection><jtitle>Petroleum chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghi, S. B.</au><au>Salehi, G.</au><au>Azad, M. T.</au><au>Nichkoohi, A. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane</atitle><jtitle>Petroleum chemistry</jtitle><stitle>Pet. Chem</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>60</volume><issue>11</issue><spage>1251</spage><epage>1259</epage><pages>1251-1259</pages><issn>0965-5441</issn><eissn>1555-6239</eissn><abstract>Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH
4
/H
2
O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH
4
/H
2
O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965544120110109</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5441 |
ispartof | Petroleum chemistry, 2020-11, Vol.60 (11), p.1251-1259 |
issn | 0965-5441 1555-6239 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A650475018 |
source | EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Chemistry Chemistry and Materials Science Fluid dynamics Industrial Chemistry/Chemical Engineering Methane Natural gas Petroleum refineries Porosity Production processes |
title | 3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20CFD%20Modeling%20and%20Optimization%20of%20a%20Cylindrical%20Porous%20Bed%20Reactor%20for%20Hydrogen%20Production%20using%20Steam%20Reforming%20of%20Methane&rft.jtitle=Petroleum%20chemistry&rft.au=Haghi,%20S.%20B.&rft.date=2020-11-01&rft.volume=60&rft.issue=11&rft.spage=1251&rft.epage=1259&rft.pages=1251-1259&rft.issn=0965-5441&rft.eissn=1555-6239&rft_id=info:doi/10.1134/S0965544120110109&rft_dat=%3Cgale_cross%3EA650475018%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A650475018&rfr_iscdi=true |