Analysis and Prediction of Dammed Water Level in a Hydropower Reservoir Using Machine Learning and Persistence-Based Techniques

This paper presents long- and short-term analyses and predictions of dammed water level in a hydropower reservoir. The long-term analysis was carried out by using techniques such as detrended fluctuation analysis, auto-regressive models, and persistence-based algorithms. On the other hand, the short...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2020-06, Vol.12 (6), p.1528
Hauptverfasser: Castillo-Botón, C., Casillas-Pérez, D., Casanova-Mateo, C., Moreno-Saavedra, L. M., Morales-Díaz, B., Sanz-Justo, J., Gutiérrez, P. A., Salcedo-Sanz, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1528
container_title Water (Basel)
container_volume 12
creator Castillo-Botón, C.
Casillas-Pérez, D.
Casanova-Mateo, C.
Moreno-Saavedra, L. M.
Morales-Díaz, B.
Sanz-Justo, J.
Gutiérrez, P. A.
Salcedo-Sanz, S.
description This paper presents long- and short-term analyses and predictions of dammed water level in a hydropower reservoir. The long-term analysis was carried out by using techniques such as detrended fluctuation analysis, auto-regressive models, and persistence-based algorithms. On the other hand, the short-term analysis of the dammed water level in the hydropower reservoir was modeled as a prediction problem, where machine learning regression techniques were studied. A set of models, including different types of neural networks, Support Vector regression, or Gaussian processes was tested. Real data from a hydropower reservoir located in Galicia, Spain, qwew considered, together with predictive variables from upstream measuring stations. We show that the techniques presented in this paper offer an excellent tool for the long- and short-term analysis and prediction of dammed water level in reservoirs for hydropower purposes, especially important for the management of water resources in areas with hydrology stress, such as Spain.
doi_str_mv 10.3390/w12061528
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A646497467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A646497467</galeid><sourcerecordid>A646497467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-8a16672f3f2d413c0adece00701a60ade297879eb9b66992e60082b213525f493</originalsourceid><addsrcrecordid>eNpNUE1PAjEQbYwmEuTgP-jVw2K_trs9In5ggtEYiMdN6U6hhu1iu0I4-dctYowzh3nzMu9N8hC6pGTIuSLXO8qIpDkrT1CPkYJnQgh6-g-fo0GM7ySVUGWZkx76Gnm93kcXsfY1fglQO9O51uPW4lvdNFDjN91BwFPYwho7jzWe7OvQbtpdYl8hQti2LuB5dH6Jn7RZOQ_pWgd_IH5cIaQHHXgD2Y2OyXIGZuXdxyfEC3Rm9TrC4Hf20fz-bjaeZNPnh8fxaJoZTniXlZpKWTDLLasF5YboGgwQUhCq5WFhqigLBQu1kFIpBpKQki0Y5TnLrVC8j4ZH36VeQ-W8bbugTeoaGmdaD9YlfiSFFKoQskiCq6PAhDbGALbaBNfosK8oqQ5pV39p82_CeHHB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis and Prediction of Dammed Water Level in a Hydropower Reservoir Using Machine Learning and Persistence-Based Techniques</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Castillo-Botón, C. ; Casillas-Pérez, D. ; Casanova-Mateo, C. ; Moreno-Saavedra, L. M. ; Morales-Díaz, B. ; Sanz-Justo, J. ; Gutiérrez, P. A. ; Salcedo-Sanz, S.</creator><creatorcontrib>Castillo-Botón, C. ; Casillas-Pérez, D. ; Casanova-Mateo, C. ; Moreno-Saavedra, L. M. ; Morales-Díaz, B. ; Sanz-Justo, J. ; Gutiérrez, P. A. ; Salcedo-Sanz, S.</creatorcontrib><description>This paper presents long- and short-term analyses and predictions of dammed water level in a hydropower reservoir. The long-term analysis was carried out by using techniques such as detrended fluctuation analysis, auto-regressive models, and persistence-based algorithms. On the other hand, the short-term analysis of the dammed water level in the hydropower reservoir was modeled as a prediction problem, where machine learning regression techniques were studied. A set of models, including different types of neural networks, Support Vector regression, or Gaussian processes was tested. Real data from a hydropower reservoir located in Galicia, Spain, qwew considered, together with predictive variables from upstream measuring stations. We show that the techniques presented in this paper offer an excellent tool for the long- and short-term analysis and prediction of dammed water level in reservoirs for hydropower purposes, especially important for the management of water resources in areas with hydrology stress, such as Spain.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w12061528</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>Dams ; Environmental aspects ; Forecasts and trends ; Machine learning ; Reservoirs</subject><ispartof>Water (Basel), 2020-06, Vol.12 (6), p.1528</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-8a16672f3f2d413c0adece00701a60ade297879eb9b66992e60082b213525f493</citedby><cites>FETCH-LOGICAL-c303t-8a16672f3f2d413c0adece00701a60ade297879eb9b66992e60082b213525f493</cites><orcidid>0000-0002-8399-2281 ; 0000-0002-4048-1676 ; 0000-0002-4253-4831 ; 0000-0002-5721-1242 ; 0000-0002-2657-776X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castillo-Botón, C.</creatorcontrib><creatorcontrib>Casillas-Pérez, D.</creatorcontrib><creatorcontrib>Casanova-Mateo, C.</creatorcontrib><creatorcontrib>Moreno-Saavedra, L. M.</creatorcontrib><creatorcontrib>Morales-Díaz, B.</creatorcontrib><creatorcontrib>Sanz-Justo, J.</creatorcontrib><creatorcontrib>Gutiérrez, P. A.</creatorcontrib><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><title>Analysis and Prediction of Dammed Water Level in a Hydropower Reservoir Using Machine Learning and Persistence-Based Techniques</title><title>Water (Basel)</title><description>This paper presents long- and short-term analyses and predictions of dammed water level in a hydropower reservoir. The long-term analysis was carried out by using techniques such as detrended fluctuation analysis, auto-regressive models, and persistence-based algorithms. On the other hand, the short-term analysis of the dammed water level in the hydropower reservoir was modeled as a prediction problem, where machine learning regression techniques were studied. A set of models, including different types of neural networks, Support Vector regression, or Gaussian processes was tested. Real data from a hydropower reservoir located in Galicia, Spain, qwew considered, together with predictive variables from upstream measuring stations. We show that the techniques presented in this paper offer an excellent tool for the long- and short-term analysis and prediction of dammed water level in reservoirs for hydropower purposes, especially important for the management of water resources in areas with hydrology stress, such as Spain.</description><subject>Dams</subject><subject>Environmental aspects</subject><subject>Forecasts and trends</subject><subject>Machine learning</subject><subject>Reservoirs</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNUE1PAjEQbYwmEuTgP-jVw2K_trs9In5ggtEYiMdN6U6hhu1iu0I4-dctYowzh3nzMu9N8hC6pGTIuSLXO8qIpDkrT1CPkYJnQgh6-g-fo0GM7ySVUGWZkx76Gnm93kcXsfY1fglQO9O51uPW4lvdNFDjN91BwFPYwho7jzWe7OvQbtpdYl8hQti2LuB5dH6Jn7RZOQ_pWgd_IH5cIaQHHXgD2Y2OyXIGZuXdxyfEC3Rm9TrC4Hf20fz-bjaeZNPnh8fxaJoZTniXlZpKWTDLLasF5YboGgwQUhCq5WFhqigLBQu1kFIpBpKQki0Y5TnLrVC8j4ZH36VeQ-W8bbugTeoaGmdaD9YlfiSFFKoQskiCq6PAhDbGALbaBNfosK8oqQ5pV39p82_CeHHB</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Castillo-Botón, C.</creator><creator>Casillas-Pérez, D.</creator><creator>Casanova-Mateo, C.</creator><creator>Moreno-Saavedra, L. M.</creator><creator>Morales-Díaz, B.</creator><creator>Sanz-Justo, J.</creator><creator>Gutiérrez, P. A.</creator><creator>Salcedo-Sanz, S.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8399-2281</orcidid><orcidid>https://orcid.org/0000-0002-4048-1676</orcidid><orcidid>https://orcid.org/0000-0002-4253-4831</orcidid><orcidid>https://orcid.org/0000-0002-5721-1242</orcidid><orcidid>https://orcid.org/0000-0002-2657-776X</orcidid></search><sort><creationdate>20200601</creationdate><title>Analysis and Prediction of Dammed Water Level in a Hydropower Reservoir Using Machine Learning and Persistence-Based Techniques</title><author>Castillo-Botón, C. ; Casillas-Pérez, D. ; Casanova-Mateo, C. ; Moreno-Saavedra, L. M. ; Morales-Díaz, B. ; Sanz-Justo, J. ; Gutiérrez, P. A. ; Salcedo-Sanz, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-8a16672f3f2d413c0adece00701a60ade297879eb9b66992e60082b213525f493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dams</topic><topic>Environmental aspects</topic><topic>Forecasts and trends</topic><topic>Machine learning</topic><topic>Reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo-Botón, C.</creatorcontrib><creatorcontrib>Casillas-Pérez, D.</creatorcontrib><creatorcontrib>Casanova-Mateo, C.</creatorcontrib><creatorcontrib>Moreno-Saavedra, L. M.</creatorcontrib><creatorcontrib>Morales-Díaz, B.</creatorcontrib><creatorcontrib>Sanz-Justo, J.</creatorcontrib><creatorcontrib>Gutiérrez, P. A.</creatorcontrib><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo-Botón, C.</au><au>Casillas-Pérez, D.</au><au>Casanova-Mateo, C.</au><au>Moreno-Saavedra, L. M.</au><au>Morales-Díaz, B.</au><au>Sanz-Justo, J.</au><au>Gutiérrez, P. A.</au><au>Salcedo-Sanz, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Prediction of Dammed Water Level in a Hydropower Reservoir Using Machine Learning and Persistence-Based Techniques</atitle><jtitle>Water (Basel)</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>12</volume><issue>6</issue><spage>1528</spage><pages>1528-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>This paper presents long- and short-term analyses and predictions of dammed water level in a hydropower reservoir. The long-term analysis was carried out by using techniques such as detrended fluctuation analysis, auto-regressive models, and persistence-based algorithms. On the other hand, the short-term analysis of the dammed water level in the hydropower reservoir was modeled as a prediction problem, where machine learning regression techniques were studied. A set of models, including different types of neural networks, Support Vector regression, or Gaussian processes was tested. Real data from a hydropower reservoir located in Galicia, Spain, qwew considered, together with predictive variables from upstream measuring stations. We show that the techniques presented in this paper offer an excellent tool for the long- and short-term analysis and prediction of dammed water level in reservoirs for hydropower purposes, especially important for the management of water resources in areas with hydrology stress, such as Spain.</abstract><pub>MDPI AG</pub><doi>10.3390/w12061528</doi><orcidid>https://orcid.org/0000-0002-8399-2281</orcidid><orcidid>https://orcid.org/0000-0002-4048-1676</orcidid><orcidid>https://orcid.org/0000-0002-4253-4831</orcidid><orcidid>https://orcid.org/0000-0002-5721-1242</orcidid><orcidid>https://orcid.org/0000-0002-2657-776X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2020-06, Vol.12 (6), p.1528
issn 2073-4441
2073-4441
language eng
recordid cdi_gale_infotracacademiconefile_A646497467
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Dams
Environmental aspects
Forecasts and trends
Machine learning
Reservoirs
title Analysis and Prediction of Dammed Water Level in a Hydropower Reservoir Using Machine Learning and Persistence-Based Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Prediction%20of%20Dammed%20Water%20Level%20in%20a%20Hydropower%20Reservoir%20Using%20Machine%20Learning%20and%20Persistence-Based%20Techniques&rft.jtitle=Water%20(Basel)&rft.au=Castillo-Bot%C3%B3n,%20C.&rft.date=2020-06-01&rft.volume=12&rft.issue=6&rft.spage=1528&rft.pages=1528-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w12061528&rft_dat=%3Cgale_cross%3EA646497467%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A646497467&rfr_iscdi=true