Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree

In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and relate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neutrosophic sets and systems 2020-12, Vol.36, p.37
Hauptverfasser: Ghods, Masoud, Rostami, Zahra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 37
container_title Neutrosophic sets and systems
container_volume 36
creator Ghods, Masoud
Rostami, Zahra
description In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related theorems for Neutrosophic trees. Keywords: Neutrosophic trees; totally and partial Connectivity indices; maximum spanning tree; strong spanning tree; strong cycle; strong edge
doi_str_mv 10.5281/zenodo.4065371
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A642707505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642707505</galeid><sourcerecordid>A642707505</sourcerecordid><originalsourceid>FETCH-LOGICAL-g109t-56afdb5664b408e92b670d139a8f1803f6bae0ad269fadf70a7d77eed4116f483</originalsourceid><addsrcrecordid>eNotjE1LxDAURbNQcBhn6zp_oPWlaZJ2ORS_YMCN7gR5bV46kWkyNBkZ_fUWlQv3woFzGbsRUKqqEbffFKKNZQ1aSSMu2KqSUhQalLpim5Q-AEBUolVSrNhbF0OgIftPn7-4D5bOS_NApzzHFI97P_A8EyWOwfK8J46HMc4-7yeeI3eLwX1OfMKzn04TT0cMwYfxV7pmlw4PiTb_u2av93cv3WOxe3546ra7YhTQ5kJpdLZXWtd9DQ21Va8NWCFbbJxoQDrdIwHaSrcOrTOAxhpDZGshtKsbuWbl3--IB3r3wcU847DE0uSHGMj5hW91XRkwCpT8AfydWjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ghods, Masoud ; Rostami, Zahra</creator><creatorcontrib>Ghods, Masoud ; Rostami, Zahra</creatorcontrib><description>In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related theorems for Neutrosophic trees. Keywords: Neutrosophic trees; totally and partial Connectivity indices; maximum spanning tree; strong spanning tree; strong cycle; strong edge</description><identifier>ISSN: 2331-6055</identifier><identifier>DOI: 10.5281/zenodo.4065371</identifier><language>eng</language><publisher>Neutrosophic Sets and Systems</publisher><subject>Algorithms</subject><ispartof>Neutrosophic sets and systems, 2020-12, Vol.36, p.37</ispartof><rights>COPYRIGHT 2020 Neutrosophic Sets and Systems</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghods, Masoud</creatorcontrib><creatorcontrib>Rostami, Zahra</creatorcontrib><title>Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree</title><title>Neutrosophic sets and systems</title><description>In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related theorems for Neutrosophic trees. Keywords: Neutrosophic trees; totally and partial Connectivity indices; maximum spanning tree; strong spanning tree; strong cycle; strong edge</description><subject>Algorithms</subject><issn>2331-6055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjE1LxDAURbNQcBhn6zp_oPWlaZJ2ORS_YMCN7gR5bV46kWkyNBkZ_fUWlQv3woFzGbsRUKqqEbffFKKNZQ1aSSMu2KqSUhQalLpim5Q-AEBUolVSrNhbF0OgIftPn7-4D5bOS_NApzzHFI97P_A8EyWOwfK8J46HMc4-7yeeI3eLwX1OfMKzn04TT0cMwYfxV7pmlw4PiTb_u2av93cv3WOxe3546ra7YhTQ5kJpdLZXWtd9DQ21Va8NWCFbbJxoQDrdIwHaSrcOrTOAxhpDZGshtKsbuWbl3--IB3r3wcU847DE0uSHGMj5hW91XRkwCpT8AfydWjc</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ghods, Masoud</creator><creator>Rostami, Zahra</creator><general>Neutrosophic Sets and Systems</general><scope/></search><sort><creationdate>20201201</creationdate><title>Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree</title><author>Ghods, Masoud ; Rostami, Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g109t-56afdb5664b408e92b670d139a8f1803f6bae0ad269fadf70a7d77eed4116f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghods, Masoud</creatorcontrib><creatorcontrib>Rostami, Zahra</creatorcontrib><jtitle>Neutrosophic sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghods, Masoud</au><au>Rostami, Zahra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree</atitle><jtitle>Neutrosophic sets and systems</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>36</volume><spage>37</spage><pages>37-</pages><issn>2331-6055</issn><abstract>In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related theorems for Neutrosophic trees. Keywords: Neutrosophic trees; totally and partial Connectivity indices; maximum spanning tree; strong spanning tree; strong cycle; strong edge</abstract><pub>Neutrosophic Sets and Systems</pub><doi>10.5281/zenodo.4065371</doi></addata></record>
fulltext fulltext
identifier ISSN: 2331-6055
ispartof Neutrosophic sets and systems, 2020-12, Vol.36, p.37
issn 2331-6055
language eng
recordid cdi_gale_infotracacademiconefile_A642707505
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
title Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectivity%20index%20in%20neutrosophic%20trees%20and%20the%20algorithm%20to%20find%20its%20maximum%20spanning%20tree&rft.jtitle=Neutrosophic%20sets%20and%20systems&rft.au=Ghods,%20Masoud&rft.date=2020-12-01&rft.volume=36&rft.spage=37&rft.pages=37-&rft.issn=2331-6055&rft_id=info:doi/10.5281/zenodo.4065371&rft_dat=%3Cgale%3EA642707505%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A642707505&rfr_iscdi=true