Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree
In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and relate...
Gespeichert in:
Veröffentlicht in: | Neutrosophic sets and systems 2020-12, Vol.36, p.37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 37 |
container_title | Neutrosophic sets and systems |
container_volume | 36 |
creator | Ghods, Masoud Rostami, Zahra |
description | In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related theorems for Neutrosophic trees. Keywords: Neutrosophic trees; totally and partial Connectivity indices; maximum spanning tree; strong spanning tree; strong cycle; strong edge |
doi_str_mv | 10.5281/zenodo.4065371 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A642707505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A642707505</galeid><sourcerecordid>A642707505</sourcerecordid><originalsourceid>FETCH-LOGICAL-g109t-56afdb5664b408e92b670d139a8f1803f6bae0ad269fadf70a7d77eed4116f483</originalsourceid><addsrcrecordid>eNotjE1LxDAURbNQcBhn6zp_oPWlaZJ2ORS_YMCN7gR5bV46kWkyNBkZ_fUWlQv3woFzGbsRUKqqEbffFKKNZQ1aSSMu2KqSUhQalLpim5Q-AEBUolVSrNhbF0OgIftPn7-4D5bOS_NApzzHFI97P_A8EyWOwfK8J46HMc4-7yeeI3eLwX1OfMKzn04TT0cMwYfxV7pmlw4PiTb_u2av93cv3WOxe3546ra7YhTQ5kJpdLZXWtd9DQ21Va8NWCFbbJxoQDrdIwHaSrcOrTOAxhpDZGshtKsbuWbl3--IB3r3wcU847DE0uSHGMj5hW91XRkwCpT8AfydWjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ghods, Masoud ; Rostami, Zahra</creator><creatorcontrib>Ghods, Masoud ; Rostami, Zahra</creatorcontrib><description>In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related theorems for Neutrosophic trees. Keywords: Neutrosophic trees; totally and partial Connectivity indices; maximum spanning tree; strong spanning tree; strong cycle; strong edge</description><identifier>ISSN: 2331-6055</identifier><identifier>DOI: 10.5281/zenodo.4065371</identifier><language>eng</language><publisher>Neutrosophic Sets and Systems</publisher><subject>Algorithms</subject><ispartof>Neutrosophic sets and systems, 2020-12, Vol.36, p.37</ispartof><rights>COPYRIGHT 2020 Neutrosophic Sets and Systems</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghods, Masoud</creatorcontrib><creatorcontrib>Rostami, Zahra</creatorcontrib><title>Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree</title><title>Neutrosophic sets and systems</title><description>In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related theorems for Neutrosophic trees. Keywords: Neutrosophic trees; totally and partial Connectivity indices; maximum spanning tree; strong spanning tree; strong cycle; strong edge</description><subject>Algorithms</subject><issn>2331-6055</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjE1LxDAURbNQcBhn6zp_oPWlaZJ2ORS_YMCN7gR5bV46kWkyNBkZ_fUWlQv3woFzGbsRUKqqEbffFKKNZQ1aSSMu2KqSUhQalLpim5Q-AEBUolVSrNhbF0OgIftPn7-4D5bOS_NApzzHFI97P_A8EyWOwfK8J46HMc4-7yeeI3eLwX1OfMKzn04TT0cMwYfxV7pmlw4PiTb_u2av93cv3WOxe3546ra7YhTQ5kJpdLZXWtd9DQ21Va8NWCFbbJxoQDrdIwHaSrcOrTOAxhpDZGshtKsbuWbl3--IB3r3wcU847DE0uSHGMj5hW91XRkwCpT8AfydWjc</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ghods, Masoud</creator><creator>Rostami, Zahra</creator><general>Neutrosophic Sets and Systems</general><scope/></search><sort><creationdate>20201201</creationdate><title>Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree</title><author>Ghods, Masoud ; Rostami, Zahra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g109t-56afdb5664b408e92b670d139a8f1803f6bae0ad269fadf70a7d77eed4116f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghods, Masoud</creatorcontrib><creatorcontrib>Rostami, Zahra</creatorcontrib><jtitle>Neutrosophic sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghods, Masoud</au><au>Rostami, Zahra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree</atitle><jtitle>Neutrosophic sets and systems</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>36</volume><spage>37</spage><pages>37-</pages><issn>2331-6055</issn><abstract>In this paper, we first define the Neutrosophic tree using the concept of the strong cycle. We then define a strong spanning Neutrosophic tree. In the following, we propose an algorithm for detecting the maximum spanning tree in Neutrosophic graphs. Next, we discuss the Connectivity index and related theorems for Neutrosophic trees. Keywords: Neutrosophic trees; totally and partial Connectivity indices; maximum spanning tree; strong spanning tree; strong cycle; strong edge</abstract><pub>Neutrosophic Sets and Systems</pub><doi>10.5281/zenodo.4065371</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-6055 |
ispartof | Neutrosophic sets and systems, 2020-12, Vol.36, p.37 |
issn | 2331-6055 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A642707505 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms |
title | Connectivity index in neutrosophic trees and the algorithm to find its maximum spanning tree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A17%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connectivity%20index%20in%20neutrosophic%20trees%20and%20the%20algorithm%20to%20find%20its%20maximum%20spanning%20tree&rft.jtitle=Neutrosophic%20sets%20and%20systems&rft.au=Ghods,%20Masoud&rft.date=2020-12-01&rft.volume=36&rft.spage=37&rft.pages=37-&rft.issn=2331-6055&rft_id=info:doi/10.5281/zenodo.4065371&rft_dat=%3Cgale%3EA642707505%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A642707505&rfr_iscdi=true |