Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data
Motivation The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or m...
Gespeichert in:
Veröffentlicht in: | PloS one 2020-11, Vol.15 (11), p.e0242073-e0242073, Article 0242073 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0242073 |
---|---|
container_issue | 11 |
container_start_page | e0242073 |
container_title | PloS one |
container_volume | 15 |
creator | Zhang, Xinyan Guo, Boyi Yi, Nengjun |
description | Motivation
The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data.
Results
In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zero-inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa. |
doi_str_mv | 10.1371/journal.pone.0242073 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A641043211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641043211</galeid><doaj_id>oai_doaj_org_article_9c861cbca72742f5a435963839b5a81e</doaj_id><sourcerecordid>A641043211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5d89d6bef36adcd7164553009f894b26ababe6e3fbf97b3f3ccf7d22011e35e53</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgigyYz6atLkRlsGPgcUFvy68CWmadDKkydqkuuuvNzPTHaayF0svmp4-5z0957zNsqcQLCAu4duNH3on7OLSO7UAqECgxPeyU8gwmlME8P2j80n2KIQNAARXlD7MTjCGlGJCT7PPP1Xv5yunrYiqyVsxhGCEyztzlR473ygbcu37XKRa13-Na3PrXWvi0JgUSZzsfW18p_JGRPE4e6CFDerJeJ9l3z-8_7b8ND-_-Lhanp3PJWUozklTsYbWSmMqGtmUkBaEYACYrlhRIypqUSuqsK41K2ussZS6bBACECpMFMGz7Ple99L6wMdRBI4KkgQYAygRqz3ReLHhl73pRH_NvTB8F_B9y0UfjbSKM1lRKGspSlQWSBNRYMIorjCriahSxVn2bqw21J1qpHKxF3YiOn3jzJq3_jcvKUGIFkng1SjQ-1-DCpF3JkhlrXDKD7vvZqkmwiChL_5Db-9upFqRGjBO-1RXbkX5GS0gKDCCMFGLW6h0NSrtLflGmxSfJLyeJCQmqqu4cwVfff1yd_bix5R9ecSulbBxHbwdovEuTMFiDyZXhdArfRgyBHxr-5tp8K3t-Wj7lPbseEGHpBufJ-DNHvijaq-DNMpJdcBA-jPS8CtE06nYrqu6O700UWz7WPrBRfwP6JMdjg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458949902</pqid></control><display><type>article</type><title>Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Xinyan ; Guo, Boyi ; Yi, Nengjun</creator><contributor>Staley, Christopher</contributor><creatorcontrib>Zhang, Xinyan ; Guo, Boyi ; Yi, Nengjun ; Staley, Christopher</creatorcontrib><description>Motivation
The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data.
Results
In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zero-inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242073</identifier><identifier>PMID: 33166356</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Algorithms ; Analysis ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacterial Load ; Biology and Life Sciences ; Computer applications ; Computer Simulation ; Correlation ; Correlation analysis ; Data analysis ; Disease ; Dysbacteriosis ; Dysbiosis - microbiology ; Gaussian processes ; Health aspects ; Humans ; Longitudinal Studies ; Mathematical models ; Medicine and Health Sciences ; Methods ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Multidisciplinary Sciences ; Normal Distribution ; Physical Sciences ; Pregnancy ; Regression analysis ; Regression models ; Research and analysis methods ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Science & Technology ; Science & Technology - Other Topics ; Software ; Statistical analysis ; Statistical methods ; Statistical models ; Taxonomy</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242073-e0242073, Article 0242073</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000592382600044</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c692t-5d89d6bef36adcd7164553009f894b26ababe6e3fbf97b3f3ccf7d22011e35e53</citedby><cites>FETCH-LOGICAL-c692t-5d89d6bef36adcd7164553009f894b26ababe6e3fbf97b3f3ccf7d22011e35e53</cites><orcidid>0000-0003-2950-2349 ; 0000-0002-8274-8711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652264/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652264/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,2929,23871,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33166356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Staley, Christopher</contributor><creatorcontrib>Zhang, Xinyan</creatorcontrib><creatorcontrib>Guo, Boyi</creatorcontrib><creatorcontrib>Yi, Nengjun</creatorcontrib><title>Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data</title><title>PloS one</title><addtitle>PLOS ONE</addtitle><addtitle>PLoS One</addtitle><description>Motivation
The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data.
Results
In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zero-inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacterial Load</subject><subject>Biology and Life Sciences</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Data analysis</subject><subject>Disease</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis - microbiology</subject><subject>Gaussian processes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Multidisciplinary Sciences</subject><subject>Normal Distribution</subject><subject>Physical Sciences</subject><subject>Pregnancy</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and analysis methods</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Taxonomy</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgigyYz6atLkRlsGPgcUFvy68CWmadDKkydqkuuuvNzPTHaayF0svmp4-5z0957zNsqcQLCAu4duNH3on7OLSO7UAqECgxPeyU8gwmlME8P2j80n2KIQNAARXlD7MTjCGlGJCT7PPP1Xv5yunrYiqyVsxhGCEyztzlR473ygbcu37XKRa13-Na3PrXWvi0JgUSZzsfW18p_JGRPE4e6CFDerJeJ9l3z-8_7b8ND-_-Lhanp3PJWUozklTsYbWSmMqGtmUkBaEYACYrlhRIypqUSuqsK41K2ussZS6bBACECpMFMGz7Ple99L6wMdRBI4KkgQYAygRqz3ReLHhl73pRH_NvTB8F_B9y0UfjbSKM1lRKGspSlQWSBNRYMIorjCriahSxVn2bqw21J1qpHKxF3YiOn3jzJq3_jcvKUGIFkng1SjQ-1-DCpF3JkhlrXDKD7vvZqkmwiChL_5Db-9upFqRGjBO-1RXbkX5GS0gKDCCMFGLW6h0NSrtLflGmxSfJLyeJCQmqqu4cwVfff1yd_bix5R9ecSulbBxHbwdovEuTMFiDyZXhdArfRgyBHxr-5tp8K3t-Wj7lPbseEGHpBufJ-DNHvijaq-DNMpJdcBA-jPS8CtE06nYrqu6O700UWz7WPrBRfwP6JMdjg</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Zhang, Xinyan</creator><creator>Guo, Boyi</creator><creator>Yi, Nengjun</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2950-2349</orcidid><orcidid>https://orcid.org/0000-0002-8274-8711</orcidid></search><sort><creationdate>20201109</creationdate><title>Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data</title><author>Zhang, Xinyan ; Guo, Boyi ; Yi, Nengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5d89d6bef36adcd7164553009f894b26ababe6e3fbf97b3f3ccf7d22011e35e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacterial Load</topic><topic>Biology and Life Sciences</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Data analysis</topic><topic>Disease</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis - microbiology</topic><topic>Gaussian processes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Multidisciplinary Sciences</topic><topic>Normal Distribution</topic><topic>Physical Sciences</topic><topic>Pregnancy</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and analysis methods</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyan</creatorcontrib><creatorcontrib>Guo, Boyi</creatorcontrib><creatorcontrib>Yi, Nengjun</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyan</au><au>Guo, Boyi</au><au>Yi, Nengjun</au><au>Staley, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data</atitle><jtitle>PloS one</jtitle><stitle>PLOS ONE</stitle><addtitle>PLoS One</addtitle><date>2020-11-09</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242073</spage><epage>e0242073</epage><pages>e0242073-e0242073</pages><artnum>0242073</artnum><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Motivation
The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data.
Results
In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zero-inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>33166356</pmid><doi>10.1371/journal.pone.0242073</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2950-2349</orcidid><orcidid>https://orcid.org/0000-0002-8274-8711</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2020-11, Vol.15 (11), p.e0242073-e0242073, Article 0242073 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A641043211 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Analysis Bacteria - genetics Bacteria - isolation & purification Bacterial Load Biology and Life Sciences Computer applications Computer Simulation Correlation Correlation analysis Data analysis Disease Dysbacteriosis Dysbiosis - microbiology Gaussian processes Health aspects Humans Longitudinal Studies Mathematical models Medicine and Health Sciences Methods Microbiomes Microbiota Microbiota (Symbiotic organisms) Multidisciplinary Sciences Normal Distribution Physical Sciences Pregnancy Regression analysis Regression models Research and analysis methods RNA, Ribosomal, 16S - genetics rRNA 16S Science & Technology Science & Technology - Other Topics Software Statistical analysis Statistical methods Statistical models Taxonomy |
title | Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Inflated%20gaussian%20mixed%20models%20for%20analyzing%20longitudinal%20microbiome%20data&rft.jtitle=PloS%20one&rft.au=Zhang,%20Xinyan&rft.date=2020-11-09&rft.volume=15&rft.issue=11&rft.spage=e0242073&rft.epage=e0242073&rft.pages=e0242073-e0242073&rft.artnum=0242073&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242073&rft_dat=%3Cgale_webof%3EA641043211%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458949902&rft_id=info:pmid/33166356&rft_galeid=A641043211&rft_doaj_id=oai_doaj_org_article_9c861cbca72742f5a435963839b5a81e&rfr_iscdi=true |