Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data

Motivation The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2020-11, Vol.15 (11), p.e0242073-e0242073, Article 0242073
Hauptverfasser: Zhang, Xinyan, Guo, Boyi, Yi, Nengjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0242073
container_issue 11
container_start_page e0242073
container_title PloS one
container_volume 15
creator Zhang, Xinyan
Guo, Boyi
Yi, Nengjun
description Motivation The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data. Results In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zero-inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.
doi_str_mv 10.1371/journal.pone.0242073
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A641043211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A641043211</galeid><doaj_id>oai_doaj_org_article_9c861cbca72742f5a435963839b5a81e</doaj_id><sourcerecordid>A641043211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5d89d6bef36adcd7164553009f894b26ababe6e3fbf97b3f3ccf7d22011e35e53</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QLgigyYz6atLkRlsGPgcUFvy68CWmadDKkydqkuuuvNzPTHaayF0svmp4-5z0957zNsqcQLCAu4duNH3on7OLSO7UAqECgxPeyU8gwmlME8P2j80n2KIQNAARXlD7MTjCGlGJCT7PPP1Xv5yunrYiqyVsxhGCEyztzlR473ygbcu37XKRa13-Na3PrXWvi0JgUSZzsfW18p_JGRPE4e6CFDerJeJ9l3z-8_7b8ND-_-Lhanp3PJWUozklTsYbWSmMqGtmUkBaEYACYrlhRIypqUSuqsK41K2ussZS6bBACECpMFMGz7Ple99L6wMdRBI4KkgQYAygRqz3ReLHhl73pRH_NvTB8F_B9y0UfjbSKM1lRKGspSlQWSBNRYMIorjCriahSxVn2bqw21J1qpHKxF3YiOn3jzJq3_jcvKUGIFkng1SjQ-1-DCpF3JkhlrXDKD7vvZqkmwiChL_5Db-9upFqRGjBO-1RXbkX5GS0gKDCCMFGLW6h0NSrtLflGmxSfJLyeJCQmqqu4cwVfff1yd_bix5R9ecSulbBxHbwdovEuTMFiDyZXhdArfRgyBHxr-5tp8K3t-Wj7lPbseEGHpBufJ-DNHvijaq-DNMpJdcBA-jPS8CtE06nYrqu6O700UWz7WPrBRfwP6JMdjg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458949902</pqid></control><display><type>article</type><title>Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Xinyan ; Guo, Boyi ; Yi, Nengjun</creator><contributor>Staley, Christopher</contributor><creatorcontrib>Zhang, Xinyan ; Guo, Boyi ; Yi, Nengjun ; Staley, Christopher</creatorcontrib><description>Motivation The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data. Results In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zero-inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0242073</identifier><identifier>PMID: 33166356</identifier><language>eng</language><publisher>SAN FRANCISCO: Public Library Science</publisher><subject>Algorithms ; Analysis ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacterial Load ; Biology and Life Sciences ; Computer applications ; Computer Simulation ; Correlation ; Correlation analysis ; Data analysis ; Disease ; Dysbacteriosis ; Dysbiosis - microbiology ; Gaussian processes ; Health aspects ; Humans ; Longitudinal Studies ; Mathematical models ; Medicine and Health Sciences ; Methods ; Microbiomes ; Microbiota ; Microbiota (Symbiotic organisms) ; Multidisciplinary Sciences ; Normal Distribution ; Physical Sciences ; Pregnancy ; Regression analysis ; Regression models ; Research and analysis methods ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Software ; Statistical analysis ; Statistical methods ; Statistical models ; Taxonomy</subject><ispartof>PloS one, 2020-11, Vol.15 (11), p.e0242073-e0242073, Article 0242073</ispartof><rights>COPYRIGHT 2020 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>17</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000592382600044</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c692t-5d89d6bef36adcd7164553009f894b26ababe6e3fbf97b3f3ccf7d22011e35e53</citedby><cites>FETCH-LOGICAL-c692t-5d89d6bef36adcd7164553009f894b26ababe6e3fbf97b3f3ccf7d22011e35e53</cites><orcidid>0000-0003-2950-2349 ; 0000-0002-8274-8711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652264/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652264/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,2929,23871,27929,27930,28253,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33166356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Staley, Christopher</contributor><creatorcontrib>Zhang, Xinyan</creatorcontrib><creatorcontrib>Guo, Boyi</creatorcontrib><creatorcontrib>Yi, Nengjun</creatorcontrib><title>Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data</title><title>PloS one</title><addtitle>PLOS ONE</addtitle><addtitle>PLoS One</addtitle><description>Motivation The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data. Results In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zero-inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacterial Load</subject><subject>Biology and Life Sciences</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Data analysis</subject><subject>Disease</subject><subject>Dysbacteriosis</subject><subject>Dysbiosis - microbiology</subject><subject>Gaussian processes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Multidisciplinary Sciences</subject><subject>Normal Distribution</subject><subject>Physical Sciences</subject><subject>Pregnancy</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research and analysis methods</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Taxonomy</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QLgigyYz6atLkRlsGPgcUFvy68CWmadDKkydqkuuuvNzPTHaayF0svmp4-5z0957zNsqcQLCAu4duNH3on7OLSO7UAqECgxPeyU8gwmlME8P2j80n2KIQNAARXlD7MTjCGlGJCT7PPP1Xv5yunrYiqyVsxhGCEyztzlR473ygbcu37XKRa13-Na3PrXWvi0JgUSZzsfW18p_JGRPE4e6CFDerJeJ9l3z-8_7b8ND-_-Lhanp3PJWUozklTsYbWSmMqGtmUkBaEYACYrlhRIypqUSuqsK41K2ussZS6bBACECpMFMGz7Ple99L6wMdRBI4KkgQYAygRqz3ReLHhl73pRH_NvTB8F_B9y0UfjbSKM1lRKGspSlQWSBNRYMIorjCriahSxVn2bqw21J1qpHKxF3YiOn3jzJq3_jcvKUGIFkng1SjQ-1-DCpF3JkhlrXDKD7vvZqkmwiChL_5Db-9upFqRGjBO-1RXbkX5GS0gKDCCMFGLW6h0NSrtLflGmxSfJLyeJCQmqqu4cwVfff1yd_bix5R9ecSulbBxHbwdovEuTMFiDyZXhdArfRgyBHxr-5tp8K3t-Wj7lPbseEGHpBufJ-DNHvijaq-DNMpJdcBA-jPS8CtE06nYrqu6O700UWz7WPrBRfwP6JMdjg</recordid><startdate>20201109</startdate><enddate>20201109</enddate><creator>Zhang, Xinyan</creator><creator>Guo, Boyi</creator><creator>Yi, Nengjun</creator><general>Public Library Science</general><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2950-2349</orcidid><orcidid>https://orcid.org/0000-0002-8274-8711</orcidid></search><sort><creationdate>20201109</creationdate><title>Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data</title><author>Zhang, Xinyan ; Guo, Boyi ; Yi, Nengjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5d89d6bef36adcd7164553009f894b26ababe6e3fbf97b3f3ccf7d22011e35e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacterial Load</topic><topic>Biology and Life Sciences</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Data analysis</topic><topic>Disease</topic><topic>Dysbacteriosis</topic><topic>Dysbiosis - microbiology</topic><topic>Gaussian processes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Multidisciplinary Sciences</topic><topic>Normal Distribution</topic><topic>Physical Sciences</topic><topic>Pregnancy</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research and analysis methods</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xinyan</creatorcontrib><creatorcontrib>Guo, Boyi</creatorcontrib><creatorcontrib>Yi, Nengjun</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xinyan</au><au>Guo, Boyi</au><au>Yi, Nengjun</au><au>Staley, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data</atitle><jtitle>PloS one</jtitle><stitle>PLOS ONE</stitle><addtitle>PLoS One</addtitle><date>2020-11-09</date><risdate>2020</risdate><volume>15</volume><issue>11</issue><spage>e0242073</spage><epage>e0242073</epage><pages>e0242073-e0242073</pages><artnum>0242073</artnum><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Motivation The human microbiome is variable and dynamic in nature. Longitudinal studies could explain the mechanisms in maintaining the microbiome in health or causing dysbiosis in disease. However, it remains challenging to properly analyze the longitudinal microbiome data from either 16S rRNA or metagenome shotgun sequencing studies, output as proportions or counts. Most microbiome data are sparse, requiring statistical models to handle zero-inflation. Moreover, longitudinal design induces correlation among the samples and thus further complicates the analysis and interpretation of the microbiome data. Results In this article, we propose zero-inflated Gaussian mixed models (ZIGMMs) to analyze longitudinal microbiome data. ZIGMMs is a robust and flexible method which can be applicable for longitudinal microbiome proportion data or count data generated with either 16S rRNA or shotgun sequencing technologies. It can include various types of fixed effects and random effects and account for various within-subject correlation structures, and can effectively handle zero-inflation. We developed an efficient Expectation-Maximization (EM) algorithm to fit the ZIGMMs by taking advantage of the standard procedure for fitting linear mixed models. We demonstrate the computational efficiency of our EM algorithm by comparing with two other zero-inflated methods. We show that ZIGMMs outperform the previously used linear mixed models (LMMs), negative binomial mixed models (NBMMs) and zero-inflated Beta regression mixed model (ZIBR) in detecting associated effects in longitudinal microbiome data through extensive simulations. We also apply our method to two public longitudinal microbiome datasets and compare with LMMs and NBMMs in detecting dynamic effects of associated taxa.</abstract><cop>SAN FRANCISCO</cop><pub>Public Library Science</pub><pmid>33166356</pmid><doi>10.1371/journal.pone.0242073</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2950-2349</orcidid><orcidid>https://orcid.org/0000-0002-8274-8711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2020-11, Vol.15 (11), p.e0242073-e0242073, Article 0242073
issn 1932-6203
1932-6203
language eng
recordid cdi_gale_infotracacademiconefile_A641043211
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Bacteria - genetics
Bacteria - isolation & purification
Bacterial Load
Biology and Life Sciences
Computer applications
Computer Simulation
Correlation
Correlation analysis
Data analysis
Disease
Dysbacteriosis
Dysbiosis - microbiology
Gaussian processes
Health aspects
Humans
Longitudinal Studies
Mathematical models
Medicine and Health Sciences
Methods
Microbiomes
Microbiota
Microbiota (Symbiotic organisms)
Multidisciplinary Sciences
Normal Distribution
Physical Sciences
Pregnancy
Regression analysis
Regression models
Research and analysis methods
RNA, Ribosomal, 16S - genetics
rRNA 16S
Science & Technology
Science & Technology - Other Topics
Software
Statistical analysis
Statistical methods
Statistical models
Taxonomy
title Zero-Inflated gaussian mixed models for analyzing longitudinal microbiome data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A34%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Inflated%20gaussian%20mixed%20models%20for%20analyzing%20longitudinal%20microbiome%20data&rft.jtitle=PloS%20one&rft.au=Zhang,%20Xinyan&rft.date=2020-11-09&rft.volume=15&rft.issue=11&rft.spage=e0242073&rft.epage=e0242073&rft.pages=e0242073-e0242073&rft.artnum=0242073&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0242073&rft_dat=%3Cgale_webof%3EA641043211%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2458949902&rft_id=info:pmid/33166356&rft_galeid=A641043211&rft_doaj_id=oai_doaj_org_article_9c861cbca72742f5a435963839b5a81e&rfr_iscdi=true