Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses

Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the pas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACI structural journal 2020-07, Vol.117 (4), p.267-278
Hauptverfasser: Chiew, S. M., Ibrahim, I. S., Jamaluddin, N., Sarbini, N. N., Ma, C. K., Ahmad, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 4
container_start_page 267
container_title ACI structural journal
container_volume 117
creator Chiew, S. M.
Ibrahim, I. S.
Jamaluddin, N.
Sarbini, N. N.
Ma, C. K.
Ahmad, Y.
description Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the past decades. Most of the research, however, is only limited to biaxial compression, whereas information regarding biaxial tension and biaxial tension-compression on SFRC is relatively scarce. This study presents a simple biaxial experimental setup to investigate the biaxial behavior of SFRC with 0.5, 1.0, and 1.5% steel fiber under biaxial tension and biaxial tension-compression. It is found that the smaller stress ratio enhanced the deformability and tensile capacity of SFRC under biaxial tension-compression, whereas the effect of stress ratio on biaxial tensile behavior of SFRC is negligible. The addition of steel fiber eventually enhanced the concrete strength by 15 to 41% under tension-compression compared with plain concrete.
doi_str_mv 10.14359/51723545
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A633832458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633832458</galeid><sourcerecordid>A633832458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-25693148d280fca22c281844b98fbc8806f7d6bc88a1f0cc150d476ab2c3be8b3</originalsourceid><addsrcrecordid>eNqNkFtLAzEQhYMoWKsP_oMFn0S25r7Zx3axKhQEL89LNjvRlHZTk10v_97Uqs8yDzMM35nhHIROCZ4QzkR5KUhBmeBiD41IyXleMEn20QgrVeaMcnKIjmJcYswwZXyEZjN40W_Oh8zb7KEHWGVz10DI78F11gcDbVb5zgToIRu6FkI2c_rD6VWiA8QI8RgdWL2KcPLTx-hpfvVY3eSLu-vbarrIDS1ln1MhS0a4aqnC1mhKDVVEcd6UyjZGKSxt0crtpInFxhCBW15I3VDDGlANG6Oz3d1N8K8DxL5e-iF06WVNOaWYkVKUiZrsqGe9gnrroQ_apGph7YzvwLq0n0rGVIpDqCQ43wlM8DEGsPUmuLUOnzXB9Xem9W-miVU79h0ab6Nx0Bn44zHGgkuZPKWJ0sr1une-q_zQ9Ul68X8p-wL6OodY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422031959</pqid></control><display><type>article</type><title>Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses</title><source>American Concrete Institute Online Journal Archives</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Chiew, S. M. ; Ibrahim, I. S. ; Jamaluddin, N. ; Sarbini, N. N. ; Ma, C. K. ; Ahmad, Y.</creator><creatorcontrib>Chiew, S. M. ; Ibrahim, I. S. ; Jamaluddin, N. ; Sarbini, N. N. ; Ma, C. K. ; Ahmad, Y.</creatorcontrib><description>Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the past decades. Most of the research, however, is only limited to biaxial compression, whereas information regarding biaxial tension and biaxial tension-compression on SFRC is relatively scarce. This study presents a simple biaxial experimental setup to investigate the biaxial behavior of SFRC with 0.5, 1.0, and 1.5% steel fiber under biaxial tension and biaxial tension-compression. It is found that the smaller stress ratio enhanced the deformability and tensile capacity of SFRC under biaxial tension-compression, whereas the effect of stress ratio on biaxial tensile behavior of SFRC is negligible. The addition of steel fiber eventually enhanced the concrete strength by 15 to 41% under tension-compression compared with plain concrete.</description><identifier>ISSN: 0889-3241</identifier><identifier>EISSN: 1944-7361</identifier><identifier>EISSN: 0889-3241</identifier><identifier>DOI: 10.14359/51723545</identifier><language>eng</language><publisher>FARMINGTON HILLS: Amer Concrete Inst</publisher><subject>Axial stress ; Compressive strength ; Concrete ; Concrete properties ; Construction &amp; Building Technology ; Construction industry ; Design ; Engineering ; Engineering, Civil ; Formability ; Materials Science ; Materials Science, Multidisciplinary ; Reinforced concrete ; Reinforcing steels ; Science &amp; Technology ; Steel ; Steel fiber reinforced concretes ; Steel fibers ; Stress ratio ; Stress-strain curves ; Studies ; Technology ; Tensile strength ; Tension</subject><ispartof>ACI structural journal, 2020-07, Vol.117 (4), p.267-278</ispartof><rights>COPYRIGHT 2020 American Concrete Institute</rights><rights>Copyright American Concrete Institute Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000546684400022</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c296t-25693148d280fca22c281844b98fbc8806f7d6bc88a1f0cc150d476ab2c3be8b3</citedby><cites>FETCH-LOGICAL-c296t-25693148d280fca22c281844b98fbc8806f7d6bc88a1f0cc150d476ab2c3be8b3</cites><orcidid>0000-0001-6718-3970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934,28257</link.rule.ids></links><search><creatorcontrib>Chiew, S. M.</creatorcontrib><creatorcontrib>Ibrahim, I. S.</creatorcontrib><creatorcontrib>Jamaluddin, N.</creatorcontrib><creatorcontrib>Sarbini, N. N.</creatorcontrib><creatorcontrib>Ma, C. K.</creatorcontrib><creatorcontrib>Ahmad, Y.</creatorcontrib><title>Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses</title><title>ACI structural journal</title><addtitle>ACI STRUCT J</addtitle><description>Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the past decades. Most of the research, however, is only limited to biaxial compression, whereas information regarding biaxial tension and biaxial tension-compression on SFRC is relatively scarce. This study presents a simple biaxial experimental setup to investigate the biaxial behavior of SFRC with 0.5, 1.0, and 1.5% steel fiber under biaxial tension and biaxial tension-compression. It is found that the smaller stress ratio enhanced the deformability and tensile capacity of SFRC under biaxial tension-compression, whereas the effect of stress ratio on biaxial tensile behavior of SFRC is negligible. The addition of steel fiber eventually enhanced the concrete strength by 15 to 41% under tension-compression compared with plain concrete.</description><subject>Axial stress</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Concrete properties</subject><subject>Construction &amp; Building Technology</subject><subject>Construction industry</subject><subject>Design</subject><subject>Engineering</subject><subject>Engineering, Civil</subject><subject>Formability</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Science &amp; Technology</subject><subject>Steel</subject><subject>Steel fiber reinforced concretes</subject><subject>Steel fibers</subject><subject>Stress ratio</subject><subject>Stress-strain curves</subject><subject>Studies</subject><subject>Technology</subject><subject>Tensile strength</subject><subject>Tension</subject><issn>0889-3241</issn><issn>1944-7361</issn><issn>0889-3241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkFtLAzEQhYMoWKsP_oMFn0S25r7Zx3axKhQEL89LNjvRlHZTk10v_97Uqs8yDzMM35nhHIROCZ4QzkR5KUhBmeBiD41IyXleMEn20QgrVeaMcnKIjmJcYswwZXyEZjN40W_Oh8zb7KEHWGVz10DI78F11gcDbVb5zgToIRu6FkI2c_rD6VWiA8QI8RgdWL2KcPLTx-hpfvVY3eSLu-vbarrIDS1ln1MhS0a4aqnC1mhKDVVEcd6UyjZGKSxt0crtpInFxhCBW15I3VDDGlANG6Oz3d1N8K8DxL5e-iF06WVNOaWYkVKUiZrsqGe9gnrroQ_apGph7YzvwLq0n0rGVIpDqCQ43wlM8DEGsPUmuLUOnzXB9Xem9W-miVU79h0ab6Nx0Bn44zHGgkuZPKWJ0sr1une-q_zQ9Ul68X8p-wL6OodY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chiew, S. M.</creator><creator>Ibrahim, I. S.</creator><creator>Jamaluddin, N.</creator><creator>Sarbini, N. N.</creator><creator>Ma, C. K.</creator><creator>Ahmad, Y.</creator><general>Amer Concrete Inst</general><general>American Concrete Institute</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6718-3970</orcidid></search><sort><creationdate>20200701</creationdate><title>Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses</title><author>Chiew, S. M. ; Ibrahim, I. S. ; Jamaluddin, N. ; Sarbini, N. N. ; Ma, C. K. ; Ahmad, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-25693148d280fca22c281844b98fbc8806f7d6bc88a1f0cc150d476ab2c3be8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axial stress</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Concrete properties</topic><topic>Construction &amp; Building Technology</topic><topic>Construction industry</topic><topic>Design</topic><topic>Engineering</topic><topic>Engineering, Civil</topic><topic>Formability</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Science &amp; Technology</topic><topic>Steel</topic><topic>Steel fiber reinforced concretes</topic><topic>Steel fibers</topic><topic>Stress ratio</topic><topic>Stress-strain curves</topic><topic>Studies</topic><topic>Technology</topic><topic>Tensile strength</topic><topic>Tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiew, S. M.</creatorcontrib><creatorcontrib>Ibrahim, I. S.</creatorcontrib><creatorcontrib>Jamaluddin, N.</creatorcontrib><creatorcontrib>Sarbini, N. N.</creatorcontrib><creatorcontrib>Ma, C. K.</creatorcontrib><creatorcontrib>Ahmad, Y.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI structural journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiew, S. M.</au><au>Ibrahim, I. S.</au><au>Jamaluddin, N.</au><au>Sarbini, N. N.</au><au>Ma, C. K.</au><au>Ahmad, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses</atitle><jtitle>ACI structural journal</jtitle><stitle>ACI STRUCT J</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>117</volume><issue>4</issue><spage>267</spage><epage>278</epage><pages>267-278</pages><issn>0889-3241</issn><eissn>1944-7361</eissn><eissn>0889-3241</eissn><abstract>Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the past decades. Most of the research, however, is only limited to biaxial compression, whereas information regarding biaxial tension and biaxial tension-compression on SFRC is relatively scarce. This study presents a simple biaxial experimental setup to investigate the biaxial behavior of SFRC with 0.5, 1.0, and 1.5% steel fiber under biaxial tension and biaxial tension-compression. It is found that the smaller stress ratio enhanced the deformability and tensile capacity of SFRC under biaxial tension-compression, whereas the effect of stress ratio on biaxial tensile behavior of SFRC is negligible. The addition of steel fiber eventually enhanced the concrete strength by 15 to 41% under tension-compression compared with plain concrete.</abstract><cop>FARMINGTON HILLS</cop><pub>Amer Concrete Inst</pub><doi>10.14359/51723545</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6718-3970</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0889-3241
ispartof ACI structural journal, 2020-07, Vol.117 (4), p.267-278
issn 0889-3241
1944-7361
0889-3241
language eng
recordid cdi_gale_infotracacademiconefile_A633832458
source American Concrete Institute Online Journal Archives; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Axial stress
Compressive strength
Concrete
Concrete properties
Construction & Building Technology
Construction industry
Design
Engineering
Engineering, Civil
Formability
Materials Science
Materials Science, Multidisciplinary
Reinforced concrete
Reinforcing steels
Science & Technology
Steel
Steel fiber reinforced concretes
Steel fibers
Stress ratio
Stress-strain curves
Studies
Technology
Tensile strength
Tension
title Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20Steel%20Fiber-Reinforced%20Concrete%20under%20Biaxial%20Stresses&rft.jtitle=ACI%20structural%20journal&rft.au=Chiew,%20S.%20M.&rft.date=2020-07-01&rft.volume=117&rft.issue=4&rft.spage=267&rft.epage=278&rft.pages=267-278&rft.issn=0889-3241&rft.eissn=1944-7361&rft_id=info:doi/10.14359/51723545&rft_dat=%3Cgale_cross%3EA633832458%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422031959&rft_id=info:pmid/&rft_galeid=A633832458&rfr_iscdi=true