Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses
Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the pas...
Gespeichert in:
Veröffentlicht in: | ACI structural journal 2020-07, Vol.117 (4), p.267-278 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 278 |
---|---|
container_issue | 4 |
container_start_page | 267 |
container_title | ACI structural journal |
container_volume | 117 |
creator | Chiew, S. M. Ibrahim, I. S. Jamaluddin, N. Sarbini, N. N. Ma, C. K. Ahmad, Y. |
description | Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the past decades. Most of the research, however, is only limited to biaxial compression, whereas information regarding biaxial tension and biaxial tension-compression on SFRC is relatively scarce. This study presents a simple biaxial experimental setup to investigate the biaxial behavior of SFRC with 0.5, 1.0, and 1.5% steel fiber under biaxial tension and biaxial tension-compression. It is found that the smaller stress ratio enhanced the deformability and tensile capacity of SFRC under biaxial tension-compression, whereas the effect of stress ratio on biaxial tensile behavior of SFRC is negligible. The addition of steel fiber eventually enhanced the concrete strength by 15 to 41% under tension-compression compared with plain concrete. |
doi_str_mv | 10.14359/51723545 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A633832458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A633832458</galeid><sourcerecordid>A633832458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-25693148d280fca22c281844b98fbc8806f7d6bc88a1f0cc150d476ab2c3be8b3</originalsourceid><addsrcrecordid>eNqNkFtLAzEQhYMoWKsP_oMFn0S25r7Zx3axKhQEL89LNjvRlHZTk10v_97Uqs8yDzMM35nhHIROCZ4QzkR5KUhBmeBiD41IyXleMEn20QgrVeaMcnKIjmJcYswwZXyEZjN40W_Oh8zb7KEHWGVz10DI78F11gcDbVb5zgToIRu6FkI2c_rD6VWiA8QI8RgdWL2KcPLTx-hpfvVY3eSLu-vbarrIDS1ln1MhS0a4aqnC1mhKDVVEcd6UyjZGKSxt0crtpInFxhCBW15I3VDDGlANG6Oz3d1N8K8DxL5e-iF06WVNOaWYkVKUiZrsqGe9gnrroQ_apGph7YzvwLq0n0rGVIpDqCQ43wlM8DEGsPUmuLUOnzXB9Xem9W-miVU79h0ab6Nx0Bn44zHGgkuZPKWJ0sr1une-q_zQ9Ul68X8p-wL6OodY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422031959</pqid></control><display><type>article</type><title>Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses</title><source>American Concrete Institute Online Journal Archives</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Chiew, S. M. ; Ibrahim, I. S. ; Jamaluddin, N. ; Sarbini, N. N. ; Ma, C. K. ; Ahmad, Y.</creator><creatorcontrib>Chiew, S. M. ; Ibrahim, I. S. ; Jamaluddin, N. ; Sarbini, N. N. ; Ma, C. K. ; Ahmad, Y.</creatorcontrib><description>Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the past decades. Most of the research, however, is only limited to biaxial compression, whereas information regarding biaxial tension and biaxial tension-compression on SFRC is relatively scarce. This study presents a simple biaxial experimental setup to investigate the biaxial behavior of SFRC with 0.5, 1.0, and 1.5% steel fiber under biaxial tension and biaxial tension-compression. It is found that the smaller stress ratio enhanced the deformability and tensile capacity of SFRC under biaxial tension-compression, whereas the effect of stress ratio on biaxial tensile behavior of SFRC is negligible. The addition of steel fiber eventually enhanced the concrete strength by 15 to 41% under tension-compression compared with plain concrete.</description><identifier>ISSN: 0889-3241</identifier><identifier>EISSN: 1944-7361</identifier><identifier>EISSN: 0889-3241</identifier><identifier>DOI: 10.14359/51723545</identifier><language>eng</language><publisher>FARMINGTON HILLS: Amer Concrete Inst</publisher><subject>Axial stress ; Compressive strength ; Concrete ; Concrete properties ; Construction & Building Technology ; Construction industry ; Design ; Engineering ; Engineering, Civil ; Formability ; Materials Science ; Materials Science, Multidisciplinary ; Reinforced concrete ; Reinforcing steels ; Science & Technology ; Steel ; Steel fiber reinforced concretes ; Steel fibers ; Stress ratio ; Stress-strain curves ; Studies ; Technology ; Tensile strength ; Tension</subject><ispartof>ACI structural journal, 2020-07, Vol.117 (4), p.267-278</ispartof><rights>COPYRIGHT 2020 American Concrete Institute</rights><rights>Copyright American Concrete Institute Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000546684400022</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c296t-25693148d280fca22c281844b98fbc8806f7d6bc88a1f0cc150d476ab2c3be8b3</citedby><cites>FETCH-LOGICAL-c296t-25693148d280fca22c281844b98fbc8806f7d6bc88a1f0cc150d476ab2c3be8b3</cites><orcidid>0000-0001-6718-3970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934,28257</link.rule.ids></links><search><creatorcontrib>Chiew, S. M.</creatorcontrib><creatorcontrib>Ibrahim, I. S.</creatorcontrib><creatorcontrib>Jamaluddin, N.</creatorcontrib><creatorcontrib>Sarbini, N. N.</creatorcontrib><creatorcontrib>Ma, C. K.</creatorcontrib><creatorcontrib>Ahmad, Y.</creatorcontrib><title>Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses</title><title>ACI structural journal</title><addtitle>ACI STRUCT J</addtitle><description>Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the past decades. Most of the research, however, is only limited to biaxial compression, whereas information regarding biaxial tension and biaxial tension-compression on SFRC is relatively scarce. This study presents a simple biaxial experimental setup to investigate the biaxial behavior of SFRC with 0.5, 1.0, and 1.5% steel fiber under biaxial tension and biaxial tension-compression. It is found that the smaller stress ratio enhanced the deformability and tensile capacity of SFRC under biaxial tension-compression, whereas the effect of stress ratio on biaxial tensile behavior of SFRC is negligible. The addition of steel fiber eventually enhanced the concrete strength by 15 to 41% under tension-compression compared with plain concrete.</description><subject>Axial stress</subject><subject>Compressive strength</subject><subject>Concrete</subject><subject>Concrete properties</subject><subject>Construction & Building Technology</subject><subject>Construction industry</subject><subject>Design</subject><subject>Engineering</subject><subject>Engineering, Civil</subject><subject>Formability</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Science & Technology</subject><subject>Steel</subject><subject>Steel fiber reinforced concretes</subject><subject>Steel fibers</subject><subject>Stress ratio</subject><subject>Stress-strain curves</subject><subject>Studies</subject><subject>Technology</subject><subject>Tensile strength</subject><subject>Tension</subject><issn>0889-3241</issn><issn>1944-7361</issn><issn>0889-3241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkFtLAzEQhYMoWKsP_oMFn0S25r7Zx3axKhQEL89LNjvRlHZTk10v_97Uqs8yDzMM35nhHIROCZ4QzkR5KUhBmeBiD41IyXleMEn20QgrVeaMcnKIjmJcYswwZXyEZjN40W_Oh8zb7KEHWGVz10DI78F11gcDbVb5zgToIRu6FkI2c_rD6VWiA8QI8RgdWL2KcPLTx-hpfvVY3eSLu-vbarrIDS1ln1MhS0a4aqnC1mhKDVVEcd6UyjZGKSxt0crtpInFxhCBW15I3VDDGlANG6Oz3d1N8K8DxL5e-iF06WVNOaWYkVKUiZrsqGe9gnrroQ_apGph7YzvwLq0n0rGVIpDqCQ43wlM8DEGsPUmuLUOnzXB9Xem9W-miVU79h0ab6Nx0Bn44zHGgkuZPKWJ0sr1une-q_zQ9Ul68X8p-wL6OodY</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Chiew, S. M.</creator><creator>Ibrahim, I. S.</creator><creator>Jamaluddin, N.</creator><creator>Sarbini, N. N.</creator><creator>Ma, C. K.</creator><creator>Ahmad, Y.</creator><general>Amer Concrete Inst</general><general>American Concrete Institute</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6718-3970</orcidid></search><sort><creationdate>20200701</creationdate><title>Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses</title><author>Chiew, S. M. ; Ibrahim, I. S. ; Jamaluddin, N. ; Sarbini, N. N. ; Ma, C. K. ; Ahmad, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-25693148d280fca22c281844b98fbc8806f7d6bc88a1f0cc150d476ab2c3be8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Axial stress</topic><topic>Compressive strength</topic><topic>Concrete</topic><topic>Concrete properties</topic><topic>Construction & Building Technology</topic><topic>Construction industry</topic><topic>Design</topic><topic>Engineering</topic><topic>Engineering, Civil</topic><topic>Formability</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Science & Technology</topic><topic>Steel</topic><topic>Steel fiber reinforced concretes</topic><topic>Steel fibers</topic><topic>Stress ratio</topic><topic>Stress-strain curves</topic><topic>Studies</topic><topic>Technology</topic><topic>Tensile strength</topic><topic>Tension</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiew, S. M.</creatorcontrib><creatorcontrib>Ibrahim, I. S.</creatorcontrib><creatorcontrib>Jamaluddin, N.</creatorcontrib><creatorcontrib>Sarbini, N. N.</creatorcontrib><creatorcontrib>Ma, C. K.</creatorcontrib><creatorcontrib>Ahmad, Y.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI structural journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiew, S. M.</au><au>Ibrahim, I. S.</au><au>Jamaluddin, N.</au><au>Sarbini, N. N.</au><au>Ma, C. K.</au><au>Ahmad, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses</atitle><jtitle>ACI structural journal</jtitle><stitle>ACI STRUCT J</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>117</volume><issue>4</issue><spage>267</spage><epage>278</epage><pages>267-278</pages><issn>0889-3241</issn><eissn>1944-7361</eissn><eissn>0889-3241</eissn><abstract>Biaxial behavior of various types of concrete is essential to be considered in construction design because construction structures normally experience multiaxial stresses rather than uniaxial stress. Research on biaxial behavior of steel fiber-reinforced concrete (SFRC) has been conducted in the past decades. Most of the research, however, is only limited to biaxial compression, whereas information regarding biaxial tension and biaxial tension-compression on SFRC is relatively scarce. This study presents a simple biaxial experimental setup to investigate the biaxial behavior of SFRC with 0.5, 1.0, and 1.5% steel fiber under biaxial tension and biaxial tension-compression. It is found that the smaller stress ratio enhanced the deformability and tensile capacity of SFRC under biaxial tension-compression, whereas the effect of stress ratio on biaxial tensile behavior of SFRC is negligible. The addition of steel fiber eventually enhanced the concrete strength by 15 to 41% under tension-compression compared with plain concrete.</abstract><cop>FARMINGTON HILLS</cop><pub>Amer Concrete Inst</pub><doi>10.14359/51723545</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6718-3970</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-3241 |
ispartof | ACI structural journal, 2020-07, Vol.117 (4), p.267-278 |
issn | 0889-3241 1944-7361 0889-3241 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A633832458 |
source | American Concrete Institute Online Journal Archives; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Axial stress Compressive strength Concrete Concrete properties Construction & Building Technology Construction industry Design Engineering Engineering, Civil Formability Materials Science Materials Science, Multidisciplinary Reinforced concrete Reinforcing steels Science & Technology Steel Steel fiber reinforced concretes Steel fibers Stress ratio Stress-strain curves Studies Technology Tensile strength Tension |
title | Behavior of Steel Fiber-Reinforced Concrete under Biaxial Stresses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T23%3A00%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20Steel%20Fiber-Reinforced%20Concrete%20under%20Biaxial%20Stresses&rft.jtitle=ACI%20structural%20journal&rft.au=Chiew,%20S.%20M.&rft.date=2020-07-01&rft.volume=117&rft.issue=4&rft.spage=267&rft.epage=278&rft.pages=267-278&rft.issn=0889-3241&rft.eissn=1944-7361&rft_id=info:doi/10.14359/51723545&rft_dat=%3Cgale_cross%3EA633832458%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422031959&rft_id=info:pmid/&rft_galeid=A633832458&rfr_iscdi=true |