Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys

This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Strojniski Vestnik - Journal of Mechanical Engineering 2019-01, Vol.65 (11-12), p.658-670
Hauptverfasser: Šarler, Božidar, Dobravec, Tadej, Glavan, Gašper, Hatić, Vanja, Mavrič, Boštjan, Vertnik, Robert, Cvahte, Peter, Gregor, Filip, Jelen, Marina, Petrovič, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 670
container_issue 11-12
container_start_page 658
container_title Strojniski Vestnik - Journal of Mechanical Engineering
container_volume 65
creator Šarler, Božidar
Dobravec, Tadej
Glavan, Gašper
Hatić, Vanja
Mavrič, Boštjan
Vertnik, Robert
Cvahte, Peter
Gregor, Filip
Jelen, Marina
Petrovič, Marko
description This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational estimation of the design changes of the casting equipment. To achieve this goal, the electromagnetic and the thermofluid process parameters are coupled to the evolution of Lorentz force, temperature, velocity, concentration, strain and stress fields as well as microstructure evolution. This forms a multi-physics and multi-scale problem of great complexity, which has not been demonstrated before. The macroscopic fluid mechanics, solid mechanics, and electromagnetic solution framework is based on local strong-form meshless formulation, involving the radial basis functions and monomials as trial functions, and local collocation or weighted least squares approximation. It is coupled to the micro-scale by incorporating the point automata solution concept. The entire macro-micro solution concept does not require meshing and space integration. The solution procedure can be easily and efficiently automatically adapted in node redistribution and/or refinement sense, which is of utmost importance when coping with fields exhibiting sharp gradients, which occur in the phase-change problems. The simulation system is coded from scratch in modern Fortran. The elements of the experimental validation of the system and the demonstration of its use for round billet casting in IMPOL Aluminium Industry are shown.
doi_str_mv 10.5545/sv-jme.2019.6350
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A628853316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A628853316</galeid><sourcerecordid>A628853316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-2e5cc38fe10582c98e86f26d75f2fb784a74815ec1544b667486fdf8793de3b63</originalsourceid><addsrcrecordid>eNotkEtrwzAQhHVooSHNvUf9AbuyXpaPwX1CQgtuz0KWV4mKbBfLDvjf1yZlD7s7MMPwIfSQkVQILh7jJflpIaUkK1LJBLlBG0JYkVCuyB3axehrQigvVMHkBsFxCqNPPs9z9DZi0zX4qlTWBMBHiOcAMeLKt1Mwo-87XM1xhBa7fsBPfgA7JuXZh4BLE0ffnXDv8D5Mre_81C5X6Od4j26dCRF2_3uLvl-ev8q35PDx-l7uD4lllI8JBWEtUw4yIhS1hQIlHZVNLhx1da64ybnKBNhMcF5LuXzSNU7lBWuA1ZJtUXrNPS3lte9cPw7GLtNA623fgfOLvpdUKcFYthrI1WCHPsYBnP4dfGuGWWdErzh1vOgFp15x6hUn-wMtUWxb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Šarler, Božidar ; Dobravec, Tadej ; Glavan, Gašper ; Hatić, Vanja ; Mavrič, Boštjan ; Vertnik, Robert ; Cvahte, Peter ; Gregor, Filip ; Jelen, Marina ; Petrovič, Marko</creator><creatorcontrib>Šarler, Božidar ; Dobravec, Tadej ; Glavan, Gašper ; Hatić, Vanja ; Mavrič, Boštjan ; Vertnik, Robert ; Cvahte, Peter ; Gregor, Filip ; Jelen, Marina ; Petrovič, Marko</creatorcontrib><description>This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational estimation of the design changes of the casting equipment. To achieve this goal, the electromagnetic and the thermofluid process parameters are coupled to the evolution of Lorentz force, temperature, velocity, concentration, strain and stress fields as well as microstructure evolution. This forms a multi-physics and multi-scale problem of great complexity, which has not been demonstrated before. The macroscopic fluid mechanics, solid mechanics, and electromagnetic solution framework is based on local strong-form meshless formulation, involving the radial basis functions and monomials as trial functions, and local collocation or weighted least squares approximation. It is coupled to the micro-scale by incorporating the point automata solution concept. The entire macro-micro solution concept does not require meshing and space integration. The solution procedure can be easily and efficiently automatically adapted in node redistribution and/or refinement sense, which is of utmost importance when coping with fields exhibiting sharp gradients, which occur in the phase-change problems. The simulation system is coded from scratch in modern Fortran. The elements of the experimental validation of the system and the demonstration of its use for round billet casting in IMPOL Aluminium Industry are shown.</description><identifier>ISSN: 0039-2480</identifier><identifier>DOI: 10.5545/sv-jme.2019.6350</identifier><language>eng</language><publisher>University of Ljubljana, Faculty of Mechanical Engineering</publisher><subject>Aluminum (Metal) ; Aluminum alloys ; Backup software ; Electromagnetism ; Flow (Dynamics) ; Robots ; Specialty metals industry</subject><ispartof>Strojniski Vestnik - Journal of Mechanical Engineering, 2019-01, Vol.65 (11-12), p.658-670</ispartof><rights>COPYRIGHT 2019 University of Ljubljana, Faculty of Mechanical Engineering</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-2e5cc38fe10582c98e86f26d75f2fb784a74815ec1544b667486fdf8793de3b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Šarler, Božidar</creatorcontrib><creatorcontrib>Dobravec, Tadej</creatorcontrib><creatorcontrib>Glavan, Gašper</creatorcontrib><creatorcontrib>Hatić, Vanja</creatorcontrib><creatorcontrib>Mavrič, Boštjan</creatorcontrib><creatorcontrib>Vertnik, Robert</creatorcontrib><creatorcontrib>Cvahte, Peter</creatorcontrib><creatorcontrib>Gregor, Filip</creatorcontrib><creatorcontrib>Jelen, Marina</creatorcontrib><creatorcontrib>Petrovič, Marko</creatorcontrib><title>Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys</title><title>Strojniski Vestnik - Journal of Mechanical Engineering</title><description>This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational estimation of the design changes of the casting equipment. To achieve this goal, the electromagnetic and the thermofluid process parameters are coupled to the evolution of Lorentz force, temperature, velocity, concentration, strain and stress fields as well as microstructure evolution. This forms a multi-physics and multi-scale problem of great complexity, which has not been demonstrated before. The macroscopic fluid mechanics, solid mechanics, and electromagnetic solution framework is based on local strong-form meshless formulation, involving the radial basis functions and monomials as trial functions, and local collocation or weighted least squares approximation. It is coupled to the micro-scale by incorporating the point automata solution concept. The entire macro-micro solution concept does not require meshing and space integration. The solution procedure can be easily and efficiently automatically adapted in node redistribution and/or refinement sense, which is of utmost importance when coping with fields exhibiting sharp gradients, which occur in the phase-change problems. The simulation system is coded from scratch in modern Fortran. The elements of the experimental validation of the system and the demonstration of its use for round billet casting in IMPOL Aluminium Industry are shown.</description><subject>Aluminum (Metal)</subject><subject>Aluminum alloys</subject><subject>Backup software</subject><subject>Electromagnetism</subject><subject>Flow (Dynamics)</subject><subject>Robots</subject><subject>Specialty metals industry</subject><issn>0039-2480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtrwzAQhHVooSHNvUf9AbuyXpaPwX1CQgtuz0KWV4mKbBfLDvjf1yZlD7s7MMPwIfSQkVQILh7jJflpIaUkK1LJBLlBG0JYkVCuyB3axehrQigvVMHkBsFxCqNPPs9z9DZi0zX4qlTWBMBHiOcAMeLKt1Mwo-87XM1xhBa7fsBPfgA7JuXZh4BLE0ffnXDv8D5Mre_81C5X6Od4j26dCRF2_3uLvl-ev8q35PDx-l7uD4lllI8JBWEtUw4yIhS1hQIlHZVNLhx1da64ybnKBNhMcF5LuXzSNU7lBWuA1ZJtUXrNPS3lte9cPw7GLtNA623fgfOLvpdUKcFYthrI1WCHPsYBnP4dfGuGWWdErzh1vOgFp15x6hUn-wMtUWxb</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Šarler, Božidar</creator><creator>Dobravec, Tadej</creator><creator>Glavan, Gašper</creator><creator>Hatić, Vanja</creator><creator>Mavrič, Boštjan</creator><creator>Vertnik, Robert</creator><creator>Cvahte, Peter</creator><creator>Gregor, Filip</creator><creator>Jelen, Marina</creator><creator>Petrovič, Marko</creator><general>University of Ljubljana, Faculty of Mechanical Engineering</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys</title><author>Šarler, Božidar ; Dobravec, Tadej ; Glavan, Gašper ; Hatić, Vanja ; Mavrič, Boštjan ; Vertnik, Robert ; Cvahte, Peter ; Gregor, Filip ; Jelen, Marina ; Petrovič, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-2e5cc38fe10582c98e86f26d75f2fb784a74815ec1544b667486fdf8793de3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum (Metal)</topic><topic>Aluminum alloys</topic><topic>Backup software</topic><topic>Electromagnetism</topic><topic>Flow (Dynamics)</topic><topic>Robots</topic><topic>Specialty metals industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šarler, Božidar</creatorcontrib><creatorcontrib>Dobravec, Tadej</creatorcontrib><creatorcontrib>Glavan, Gašper</creatorcontrib><creatorcontrib>Hatić, Vanja</creatorcontrib><creatorcontrib>Mavrič, Boštjan</creatorcontrib><creatorcontrib>Vertnik, Robert</creatorcontrib><creatorcontrib>Cvahte, Peter</creatorcontrib><creatorcontrib>Gregor, Filip</creatorcontrib><creatorcontrib>Jelen, Marina</creatorcontrib><creatorcontrib>Petrovič, Marko</creatorcontrib><collection>CrossRef</collection><jtitle>Strojniski Vestnik - Journal of Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šarler, Božidar</au><au>Dobravec, Tadej</au><au>Glavan, Gašper</au><au>Hatić, Vanja</au><au>Mavrič, Boštjan</au><au>Vertnik, Robert</au><au>Cvahte, Peter</au><au>Gregor, Filip</au><au>Jelen, Marina</au><au>Petrovič, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys</atitle><jtitle>Strojniski Vestnik - Journal of Mechanical Engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>65</volume><issue>11-12</issue><spage>658</spage><epage>670</epage><pages>658-670</pages><issn>0039-2480</issn><abstract>This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational estimation of the design changes of the casting equipment. To achieve this goal, the electromagnetic and the thermofluid process parameters are coupled to the evolution of Lorentz force, temperature, velocity, concentration, strain and stress fields as well as microstructure evolution. This forms a multi-physics and multi-scale problem of great complexity, which has not been demonstrated before. The macroscopic fluid mechanics, solid mechanics, and electromagnetic solution framework is based on local strong-form meshless formulation, involving the radial basis functions and monomials as trial functions, and local collocation or weighted least squares approximation. It is coupled to the micro-scale by incorporating the point automata solution concept. The entire macro-micro solution concept does not require meshing and space integration. The solution procedure can be easily and efficiently automatically adapted in node redistribution and/or refinement sense, which is of utmost importance when coping with fields exhibiting sharp gradients, which occur in the phase-change problems. The simulation system is coded from scratch in modern Fortran. The elements of the experimental validation of the system and the demonstration of its use for round billet casting in IMPOL Aluminium Industry are shown.</abstract><pub>University of Ljubljana, Faculty of Mechanical Engineering</pub><doi>10.5545/sv-jme.2019.6350</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-2480
ispartof Strojniski Vestnik - Journal of Mechanical Engineering, 2019-01, Vol.65 (11-12), p.658-670
issn 0039-2480
language eng
recordid cdi_gale_infotracacademiconefile_A628853316
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Aluminum (Metal)
Aluminum alloys
Backup software
Electromagnetism
Flow (Dynamics)
Robots
Specialty metals industry
title Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Physics%20and%20Multi-Scale%20Meshless%20Simulation%20System%20for%20Direct-Chill%20Casting%20of%20Aluminium%20Alloys&rft.jtitle=Strojniski%20Vestnik%20-%20Journal%20of%20Mechanical%20Engineering&rft.au=%C5%A0arler,%20Bo%C5%BEidar&rft.date=2019-01-01&rft.volume=65&rft.issue=11-12&rft.spage=658&rft.epage=670&rft.pages=658-670&rft.issn=0039-2480&rft_id=info:doi/10.5545/sv-jme.2019.6350&rft_dat=%3Cgale_cross%3EA628853316%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A628853316&rfr_iscdi=true