Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys
This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational e...
Gespeichert in:
Veröffentlicht in: | Strojniski Vestnik - Journal of Mechanical Engineering 2019-01, Vol.65 (11-12), p.658-670 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 670 |
---|---|
container_issue | 11-12 |
container_start_page | 658 |
container_title | Strojniski Vestnik - Journal of Mechanical Engineering |
container_volume | 65 |
creator | Šarler, Božidar Dobravec, Tadej Glavan, Gašper Hatić, Vanja Mavrič, Boštjan Vertnik, Robert Cvahte, Peter Gregor, Filip Jelen, Marina Petrovič, Marko |
description | This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational estimation of the design changes of the casting equipment. To achieve this goal, the electromagnetic and the thermofluid process parameters are coupled to the evolution of Lorentz force, temperature, velocity, concentration, strain and stress fields as well as microstructure evolution. This forms a multi-physics and multi-scale problem of great complexity, which has not been demonstrated before. The macroscopic fluid mechanics, solid mechanics, and electromagnetic solution framework is based on local strong-form meshless formulation, involving the radial basis functions and monomials as trial functions, and local collocation or weighted least squares approximation. It is coupled to the micro-scale by incorporating the point automata solution concept. The entire macro-micro solution concept does not require meshing and space integration. The solution procedure can be easily and efficiently automatically adapted in node redistribution and/or refinement sense, which is of utmost importance when coping with fields exhibiting sharp gradients, which occur in the phase-change problems. The simulation system is coded from scratch in modern Fortran. The elements of the experimental validation of the system and the demonstration of its use for round billet casting in IMPOL Aluminium Industry are shown. |
doi_str_mv | 10.5545/sv-jme.2019.6350 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A628853316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A628853316</galeid><sourcerecordid>A628853316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-2e5cc38fe10582c98e86f26d75f2fb784a74815ec1544b667486fdf8793de3b63</originalsourceid><addsrcrecordid>eNotkEtrwzAQhHVooSHNvUf9AbuyXpaPwX1CQgtuz0KWV4mKbBfLDvjf1yZlD7s7MMPwIfSQkVQILh7jJflpIaUkK1LJBLlBG0JYkVCuyB3axehrQigvVMHkBsFxCqNPPs9z9DZi0zX4qlTWBMBHiOcAMeLKt1Mwo-87XM1xhBa7fsBPfgA7JuXZh4BLE0ffnXDv8D5Mre_81C5X6Od4j26dCRF2_3uLvl-ev8q35PDx-l7uD4lllI8JBWEtUw4yIhS1hQIlHZVNLhx1da64ybnKBNhMcF5LuXzSNU7lBWuA1ZJtUXrNPS3lte9cPw7GLtNA623fgfOLvpdUKcFYthrI1WCHPsYBnP4dfGuGWWdErzh1vOgFp15x6hUn-wMtUWxb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Šarler, Božidar ; Dobravec, Tadej ; Glavan, Gašper ; Hatić, Vanja ; Mavrič, Boštjan ; Vertnik, Robert ; Cvahte, Peter ; Gregor, Filip ; Jelen, Marina ; Petrovič, Marko</creator><creatorcontrib>Šarler, Božidar ; Dobravec, Tadej ; Glavan, Gašper ; Hatić, Vanja ; Mavrič, Boštjan ; Vertnik, Robert ; Cvahte, Peter ; Gregor, Filip ; Jelen, Marina ; Petrovič, Marko</creatorcontrib><description>This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational estimation of the design changes of the casting equipment. To achieve this goal, the electromagnetic and the thermofluid process parameters are coupled to the evolution of Lorentz force, temperature, velocity, concentration, strain and stress fields as well as microstructure evolution. This forms a multi-physics and multi-scale problem of great complexity, which has not been demonstrated before. The macroscopic fluid mechanics, solid mechanics, and electromagnetic solution framework is based on local strong-form meshless formulation, involving the radial basis functions and monomials as trial functions, and local collocation or weighted least squares approximation. It is coupled to the micro-scale by incorporating the point automata solution concept. The entire macro-micro solution concept does not require meshing and space integration. The solution procedure can be easily and efficiently automatically adapted in node redistribution and/or refinement sense, which is of utmost importance when coping with fields exhibiting sharp gradients, which occur in the phase-change problems. The simulation system is coded from scratch in modern Fortran. The elements of the experimental validation of the system and the demonstration of its use for round billet casting in IMPOL Aluminium Industry are shown.</description><identifier>ISSN: 0039-2480</identifier><identifier>DOI: 10.5545/sv-jme.2019.6350</identifier><language>eng</language><publisher>University of Ljubljana, Faculty of Mechanical Engineering</publisher><subject>Aluminum (Metal) ; Aluminum alloys ; Backup software ; Electromagnetism ; Flow (Dynamics) ; Robots ; Specialty metals industry</subject><ispartof>Strojniski Vestnik - Journal of Mechanical Engineering, 2019-01, Vol.65 (11-12), p.658-670</ispartof><rights>COPYRIGHT 2019 University of Ljubljana, Faculty of Mechanical Engineering</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-2e5cc38fe10582c98e86f26d75f2fb784a74815ec1544b667486fdf8793de3b63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Šarler, Božidar</creatorcontrib><creatorcontrib>Dobravec, Tadej</creatorcontrib><creatorcontrib>Glavan, Gašper</creatorcontrib><creatorcontrib>Hatić, Vanja</creatorcontrib><creatorcontrib>Mavrič, Boštjan</creatorcontrib><creatorcontrib>Vertnik, Robert</creatorcontrib><creatorcontrib>Cvahte, Peter</creatorcontrib><creatorcontrib>Gregor, Filip</creatorcontrib><creatorcontrib>Jelen, Marina</creatorcontrib><creatorcontrib>Petrovič, Marko</creatorcontrib><title>Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys</title><title>Strojniski Vestnik - Journal of Mechanical Engineering</title><description>This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational estimation of the design changes of the casting equipment. To achieve this goal, the electromagnetic and the thermofluid process parameters are coupled to the evolution of Lorentz force, temperature, velocity, concentration, strain and stress fields as well as microstructure evolution. This forms a multi-physics and multi-scale problem of great complexity, which has not been demonstrated before. The macroscopic fluid mechanics, solid mechanics, and electromagnetic solution framework is based on local strong-form meshless formulation, involving the radial basis functions and monomials as trial functions, and local collocation or weighted least squares approximation. It is coupled to the micro-scale by incorporating the point automata solution concept. The entire macro-micro solution concept does not require meshing and space integration. The solution procedure can be easily and efficiently automatically adapted in node redistribution and/or refinement sense, which is of utmost importance when coping with fields exhibiting sharp gradients, which occur in the phase-change problems. The simulation system is coded from scratch in modern Fortran. The elements of the experimental validation of the system and the demonstration of its use for round billet casting in IMPOL Aluminium Industry are shown.</description><subject>Aluminum (Metal)</subject><subject>Aluminum alloys</subject><subject>Backup software</subject><subject>Electromagnetism</subject><subject>Flow (Dynamics)</subject><subject>Robots</subject><subject>Specialty metals industry</subject><issn>0039-2480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtrwzAQhHVooSHNvUf9AbuyXpaPwX1CQgtuz0KWV4mKbBfLDvjf1yZlD7s7MMPwIfSQkVQILh7jJflpIaUkK1LJBLlBG0JYkVCuyB3axehrQigvVMHkBsFxCqNPPs9z9DZi0zX4qlTWBMBHiOcAMeLKt1Mwo-87XM1xhBa7fsBPfgA7JuXZh4BLE0ffnXDv8D5Mre_81C5X6Od4j26dCRF2_3uLvl-ev8q35PDx-l7uD4lllI8JBWEtUw4yIhS1hQIlHZVNLhx1da64ybnKBNhMcF5LuXzSNU7lBWuA1ZJtUXrNPS3lte9cPw7GLtNA623fgfOLvpdUKcFYthrI1WCHPsYBnP4dfGuGWWdErzh1vOgFp15x6hUn-wMtUWxb</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Šarler, Božidar</creator><creator>Dobravec, Tadej</creator><creator>Glavan, Gašper</creator><creator>Hatić, Vanja</creator><creator>Mavrič, Boštjan</creator><creator>Vertnik, Robert</creator><creator>Cvahte, Peter</creator><creator>Gregor, Filip</creator><creator>Jelen, Marina</creator><creator>Petrovič, Marko</creator><general>University of Ljubljana, Faculty of Mechanical Engineering</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys</title><author>Šarler, Božidar ; Dobravec, Tadej ; Glavan, Gašper ; Hatić, Vanja ; Mavrič, Boštjan ; Vertnik, Robert ; Cvahte, Peter ; Gregor, Filip ; Jelen, Marina ; Petrovič, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-2e5cc38fe10582c98e86f26d75f2fb784a74815ec1544b667486fdf8793de3b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum (Metal)</topic><topic>Aluminum alloys</topic><topic>Backup software</topic><topic>Electromagnetism</topic><topic>Flow (Dynamics)</topic><topic>Robots</topic><topic>Specialty metals industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šarler, Božidar</creatorcontrib><creatorcontrib>Dobravec, Tadej</creatorcontrib><creatorcontrib>Glavan, Gašper</creatorcontrib><creatorcontrib>Hatić, Vanja</creatorcontrib><creatorcontrib>Mavrič, Boštjan</creatorcontrib><creatorcontrib>Vertnik, Robert</creatorcontrib><creatorcontrib>Cvahte, Peter</creatorcontrib><creatorcontrib>Gregor, Filip</creatorcontrib><creatorcontrib>Jelen, Marina</creatorcontrib><creatorcontrib>Petrovič, Marko</creatorcontrib><collection>CrossRef</collection><jtitle>Strojniski Vestnik - Journal of Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šarler, Božidar</au><au>Dobravec, Tadej</au><au>Glavan, Gašper</au><au>Hatić, Vanja</au><au>Mavrič, Boštjan</au><au>Vertnik, Robert</au><au>Cvahte, Peter</au><au>Gregor, Filip</au><au>Jelen, Marina</au><au>Petrovič, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys</atitle><jtitle>Strojniski Vestnik - Journal of Mechanical Engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>65</volume><issue>11-12</issue><spage>658</spage><epage>670</epage><pages>658-670</pages><issn>0039-2480</issn><abstract>This paper represents an overview of the elements of the user-friendly simulation system, developed for computational analysis and optimization of the quality and productivity of the electromagnetically direct-chill cast semi-products from aluminium alloys. The system also allows the computational estimation of the design changes of the casting equipment. To achieve this goal, the electromagnetic and the thermofluid process parameters are coupled to the evolution of Lorentz force, temperature, velocity, concentration, strain and stress fields as well as microstructure evolution. This forms a multi-physics and multi-scale problem of great complexity, which has not been demonstrated before. The macroscopic fluid mechanics, solid mechanics, and electromagnetic solution framework is based on local strong-form meshless formulation, involving the radial basis functions and monomials as trial functions, and local collocation or weighted least squares approximation. It is coupled to the micro-scale by incorporating the point automata solution concept. The entire macro-micro solution concept does not require meshing and space integration. The solution procedure can be easily and efficiently automatically adapted in node redistribution and/or refinement sense, which is of utmost importance when coping with fields exhibiting sharp gradients, which occur in the phase-change problems. The simulation system is coded from scratch in modern Fortran. The elements of the experimental validation of the system and the demonstration of its use for round billet casting in IMPOL Aluminium Industry are shown.</abstract><pub>University of Ljubljana, Faculty of Mechanical Engineering</pub><doi>10.5545/sv-jme.2019.6350</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-2480 |
ispartof | Strojniski Vestnik - Journal of Mechanical Engineering, 2019-01, Vol.65 (11-12), p.658-670 |
issn | 0039-2480 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A628853316 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Aluminum (Metal) Aluminum alloys Backup software Electromagnetism Flow (Dynamics) Robots Specialty metals industry |
title | Multi-Physics and Multi-Scale Meshless Simulation System for Direct-Chill Casting of Aluminium Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A48%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Physics%20and%20Multi-Scale%20Meshless%20Simulation%20System%20for%20Direct-Chill%20Casting%20of%20Aluminium%20Alloys&rft.jtitle=Strojniski%20Vestnik%20-%20Journal%20of%20Mechanical%20Engineering&rft.au=%C5%A0arler,%20Bo%C5%BEidar&rft.date=2019-01-01&rft.volume=65&rft.issue=11-12&rft.spage=658&rft.epage=670&rft.pages=658-670&rft.issn=0039-2480&rft_id=info:doi/10.5545/sv-jme.2019.6350&rft_dat=%3Cgale_cross%3EA628853316%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A628853316&rfr_iscdi=true |