A Nitrogen-Rich Covalent Triazine Framework as a Photocatalyst for Hydrogen Production

Covalent triazine frameworks (CTFs) have emerged as new candidate materials in various research areas such as catalysis, gas separation storage, and energy-related organic devices due to their easy functionalization, high thermal and chemical stability, and permanent porosity. Herein, we report the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in polymer technology 2020-01, Vol.2020 (2020), p.1-12
Hauptverfasser: Xu, Jing, Xie, Jiazhuo, Wang, Qing, Chen, Wan-Ting, Qiu, Shuo, Yang, Liuliu, Gong, Ruizhi, Waterhouse, Geoffrey I. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2020
container_start_page 1
container_title Advances in polymer technology
container_volume 2020
creator Xu, Jing
Xie, Jiazhuo
Wang, Qing
Chen, Wan-Ting
Qiu, Shuo
Yang, Liuliu
Gong, Ruizhi
Waterhouse, Geoffrey I. N.
description Covalent triazine frameworks (CTFs) have emerged as new candidate materials in various research areas such as catalysis, gas separation storage, and energy-related organic devices due to their easy functionalization, high thermal and chemical stability, and permanent porosity. Herein, we report the successful synthesis of a CTF rich in cyano groups (CTF-CN) by the solvothermal condensation of 2,3,6,7-tetrabromonapthalene (TBNDA), Na2(1,1-dicyanoethene-2,2-dithiolate), and 1,3,5-tris-(4-aminophenyl)-triazine (TAPT) at 120°C. XRD, SEM, and TEM characterization studies revealed CTF-CN to be amorphous and composed of ultrathin 2D sheets. CTF-CN possessed strong absorption at visible wavelengths, with UV-vis measurements suggesting a band gap energy in the range 2.7-2.9 eV. A 5 wt.% Pt/CTF-CN was found to be a promising photocatalyst for hydrogen production, affording a rate of 487.6 μmol g-1 h-1 in a H2O/TEOA/CH3OH solution under visible light. The photocatalytic activity of CTF-CN was benchmarked against g-C3N4 for meaningful assessment of performance. Importantly, the 5 wt.% Pt/CTF-CN photocatalyst exhibited excellent thermal and photocatalytic stability. Further, as a nitrogen-rich porous 2D material, CTF-CN represents a potential platform for the development of novel electrode material for fuel cells and metal ion batteries.
doi_str_mv 10.1155/2020/7819049
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A627597392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627597392</galeid><doaj_id>oai_doaj_org_article_f548b9c9c8f64370b46077b217821e21</doaj_id><sourcerecordid>A627597392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-d78429b5726ae00b8bf9e95490b875152332eba3a5561eac6c40e73f2f0f98933</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxZfSQty0t5yLoMdmE31_HI1JmkBIQ0l7FbNayZZrr1KtnOD-9ZGzoT2WOcww_ObxmNc0JwSfESLEOcUUnytNDObmTTMj2OiWMmreNjOsGG6lVOaoeT-Oa4wJ4ZLNmp9zdBtLTks_tN-jW6FFeoSNHwq6zxH-xMGjywxb_5TyLwQjAnS3SiU5KLDZjwWFlNHVvn8RQHc59TtXYho-NO8CbEb_8bUfNz8uL-4XV-3Nt6_Xi_lN65gRpe2V5tR0QlEJHuNOd8F4I7ipoxJEUMao74CBEJJ4cNJx7BULNOBgtGHsuLmedPsEa_uQ4xby3iaI9mWR8tJCLtFtvA2C684443SQnCnccYmV6ihRmhJPSdX6PGk95PR758di12mXh2rfUo6ZlkpqWqmziVrWN9k4hFQyuFq930aXBh9i3c8lVcIoZg4Hp9OBy2kcsw9_bRJsD7HZQ2z2NbaKf5nwVRx6eIr_oz9NtK-MD_CPJqxaZuwZloKeaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2403867682</pqid></control><display><type>article</type><title>A Nitrogen-Rich Covalent Triazine Framework as a Photocatalyst for Hydrogen Production</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>Alma/SFX Local Collection</source><creator>Xu, Jing ; Xie, Jiazhuo ; Wang, Qing ; Chen, Wan-Ting ; Qiu, Shuo ; Yang, Liuliu ; Gong, Ruizhi ; Waterhouse, Geoffrey I. N.</creator><contributor>Meng, Yuezhong ; Yuezhong Meng</contributor><creatorcontrib>Xu, Jing ; Xie, Jiazhuo ; Wang, Qing ; Chen, Wan-Ting ; Qiu, Shuo ; Yang, Liuliu ; Gong, Ruizhi ; Waterhouse, Geoffrey I. N. ; Meng, Yuezhong ; Yuezhong Meng</creatorcontrib><description>Covalent triazine frameworks (CTFs) have emerged as new candidate materials in various research areas such as catalysis, gas separation storage, and energy-related organic devices due to their easy functionalization, high thermal and chemical stability, and permanent porosity. Herein, we report the successful synthesis of a CTF rich in cyano groups (CTF-CN) by the solvothermal condensation of 2,3,6,7-tetrabromonapthalene (TBNDA), Na2(1,1-dicyanoethene-2,2-dithiolate), and 1,3,5-tris-(4-aminophenyl)-triazine (TAPT) at 120°C. XRD, SEM, and TEM characterization studies revealed CTF-CN to be amorphous and composed of ultrathin 2D sheets. CTF-CN possessed strong absorption at visible wavelengths, with UV-vis measurements suggesting a band gap energy in the range 2.7-2.9 eV. A 5 wt.% Pt/CTF-CN was found to be a promising photocatalyst for hydrogen production, affording a rate of 487.6 μmol g-1 h-1 in a H2O/TEOA/CH3OH solution under visible light. The photocatalytic activity of CTF-CN was benchmarked against g-C3N4 for meaningful assessment of performance. Importantly, the 5 wt.% Pt/CTF-CN photocatalyst exhibited excellent thermal and photocatalytic stability. Further, as a nitrogen-rich porous 2D material, CTF-CN represents a potential platform for the development of novel electrode material for fuel cells and metal ion batteries.</description><identifier>ISSN: 0730-6679</identifier><identifier>EISSN: 1098-2329</identifier><identifier>DOI: 10.1155/2020/7819049</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Carbon ; Carbon nitride ; Catalysis ; Catalytic activity ; Condensates ; Cyano groups ; Electrode materials ; Energy gap ; Energy storage ; Fuel cells ; Gas separation ; Hydrogen ; Hydrogen as fuel ; Hydrogen production ; Light ; Materials selection ; Nitriles ; Nitrogen ; Photocatalysis ; Photocatalysts ; Porosity ; Porous materials ; Spectrum analysis ; Stability ; Two dimensional materials</subject><ispartof>Advances in polymer technology, 2020-01, Vol.2020 (2020), p.1-12</ispartof><rights>Copyright © 2020 Ruizhi Gong et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Ruizhi Gong et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-d78429b5726ae00b8bf9e95490b875152332eba3a5561eac6c40e73f2f0f98933</citedby><cites>FETCH-LOGICAL-c395t-d78429b5726ae00b8bf9e95490b875152332eba3a5561eac6c40e73f2f0f98933</cites><orcidid>0000-0003-2935-880X ; 0000-0002-3296-3093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,874,2096,27905,27906</link.rule.ids></links><search><contributor>Meng, Yuezhong</contributor><contributor>Yuezhong Meng</contributor><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Xie, Jiazhuo</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Chen, Wan-Ting</creatorcontrib><creatorcontrib>Qiu, Shuo</creatorcontrib><creatorcontrib>Yang, Liuliu</creatorcontrib><creatorcontrib>Gong, Ruizhi</creatorcontrib><creatorcontrib>Waterhouse, Geoffrey I. N.</creatorcontrib><title>A Nitrogen-Rich Covalent Triazine Framework as a Photocatalyst for Hydrogen Production</title><title>Advances in polymer technology</title><description>Covalent triazine frameworks (CTFs) have emerged as new candidate materials in various research areas such as catalysis, gas separation storage, and energy-related organic devices due to their easy functionalization, high thermal and chemical stability, and permanent porosity. Herein, we report the successful synthesis of a CTF rich in cyano groups (CTF-CN) by the solvothermal condensation of 2,3,6,7-tetrabromonapthalene (TBNDA), Na2(1,1-dicyanoethene-2,2-dithiolate), and 1,3,5-tris-(4-aminophenyl)-triazine (TAPT) at 120°C. XRD, SEM, and TEM characterization studies revealed CTF-CN to be amorphous and composed of ultrathin 2D sheets. CTF-CN possessed strong absorption at visible wavelengths, with UV-vis measurements suggesting a band gap energy in the range 2.7-2.9 eV. A 5 wt.% Pt/CTF-CN was found to be a promising photocatalyst for hydrogen production, affording a rate of 487.6 μmol g-1 h-1 in a H2O/TEOA/CH3OH solution under visible light. The photocatalytic activity of CTF-CN was benchmarked against g-C3N4 for meaningful assessment of performance. Importantly, the 5 wt.% Pt/CTF-CN photocatalyst exhibited excellent thermal and photocatalytic stability. Further, as a nitrogen-rich porous 2D material, CTF-CN represents a potential platform for the development of novel electrode material for fuel cells and metal ion batteries.</description><subject>Carbon</subject><subject>Carbon nitride</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Condensates</subject><subject>Cyano groups</subject><subject>Electrode materials</subject><subject>Energy gap</subject><subject>Energy storage</subject><subject>Fuel cells</subject><subject>Gas separation</subject><subject>Hydrogen</subject><subject>Hydrogen as fuel</subject><subject>Hydrogen production</subject><subject>Light</subject><subject>Materials selection</subject><subject>Nitriles</subject><subject>Nitrogen</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Spectrum analysis</subject><subject>Stability</subject><subject>Two dimensional materials</subject><issn>0730-6679</issn><issn>1098-2329</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1rGzEQxZfSQty0t5yLoMdmE31_HI1JmkBIQ0l7FbNayZZrr1KtnOD-9ZGzoT2WOcww_ObxmNc0JwSfESLEOcUUnytNDObmTTMj2OiWMmreNjOsGG6lVOaoeT-Oa4wJ4ZLNmp9zdBtLTks_tN-jW6FFeoSNHwq6zxH-xMGjywxb_5TyLwQjAnS3SiU5KLDZjwWFlNHVvn8RQHc59TtXYho-NO8CbEb_8bUfNz8uL-4XV-3Nt6_Xi_lN65gRpe2V5tR0QlEJHuNOd8F4I7ipoxJEUMao74CBEJJ4cNJx7BULNOBgtGHsuLmedPsEa_uQ4xby3iaI9mWR8tJCLtFtvA2C684443SQnCnccYmV6ihRmhJPSdX6PGk95PR758di12mXh2rfUo6ZlkpqWqmziVrWN9k4hFQyuFq930aXBh9i3c8lVcIoZg4Hp9OBy2kcsw9_bRJsD7HZQ2z2NbaKf5nwVRx6eIr_oz9NtK-MD_CPJqxaZuwZloKeaw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Xu, Jing</creator><creator>Xie, Jiazhuo</creator><creator>Wang, Qing</creator><creator>Chen, Wan-Ting</creator><creator>Qiu, Shuo</creator><creator>Yang, Liuliu</creator><creator>Gong, Ruizhi</creator><creator>Waterhouse, Geoffrey I. N.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2935-880X</orcidid><orcidid>https://orcid.org/0000-0002-3296-3093</orcidid></search><sort><creationdate>20200101</creationdate><title>A Nitrogen-Rich Covalent Triazine Framework as a Photocatalyst for Hydrogen Production</title><author>Xu, Jing ; Xie, Jiazhuo ; Wang, Qing ; Chen, Wan-Ting ; Qiu, Shuo ; Yang, Liuliu ; Gong, Ruizhi ; Waterhouse, Geoffrey I. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-d78429b5726ae00b8bf9e95490b875152332eba3a5561eac6c40e73f2f0f98933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon</topic><topic>Carbon nitride</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Condensates</topic><topic>Cyano groups</topic><topic>Electrode materials</topic><topic>Energy gap</topic><topic>Energy storage</topic><topic>Fuel cells</topic><topic>Gas separation</topic><topic>Hydrogen</topic><topic>Hydrogen as fuel</topic><topic>Hydrogen production</topic><topic>Light</topic><topic>Materials selection</topic><topic>Nitriles</topic><topic>Nitrogen</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Spectrum analysis</topic><topic>Stability</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Xie, Jiazhuo</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Chen, Wan-Ting</creatorcontrib><creatorcontrib>Qiu, Shuo</creatorcontrib><creatorcontrib>Yang, Liuliu</creatorcontrib><creatorcontrib>Gong, Ruizhi</creatorcontrib><creatorcontrib>Waterhouse, Geoffrey I. N.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in polymer technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jing</au><au>Xie, Jiazhuo</au><au>Wang, Qing</au><au>Chen, Wan-Ting</au><au>Qiu, Shuo</au><au>Yang, Liuliu</au><au>Gong, Ruizhi</au><au>Waterhouse, Geoffrey I. N.</au><au>Meng, Yuezhong</au><au>Yuezhong Meng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nitrogen-Rich Covalent Triazine Framework as a Photocatalyst for Hydrogen Production</atitle><jtitle>Advances in polymer technology</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0730-6679</issn><eissn>1098-2329</eissn><abstract>Covalent triazine frameworks (CTFs) have emerged as new candidate materials in various research areas such as catalysis, gas separation storage, and energy-related organic devices due to their easy functionalization, high thermal and chemical stability, and permanent porosity. Herein, we report the successful synthesis of a CTF rich in cyano groups (CTF-CN) by the solvothermal condensation of 2,3,6,7-tetrabromonapthalene (TBNDA), Na2(1,1-dicyanoethene-2,2-dithiolate), and 1,3,5-tris-(4-aminophenyl)-triazine (TAPT) at 120°C. XRD, SEM, and TEM characterization studies revealed CTF-CN to be amorphous and composed of ultrathin 2D sheets. CTF-CN possessed strong absorption at visible wavelengths, with UV-vis measurements suggesting a band gap energy in the range 2.7-2.9 eV. A 5 wt.% Pt/CTF-CN was found to be a promising photocatalyst for hydrogen production, affording a rate of 487.6 μmol g-1 h-1 in a H2O/TEOA/CH3OH solution under visible light. The photocatalytic activity of CTF-CN was benchmarked against g-C3N4 for meaningful assessment of performance. Importantly, the 5 wt.% Pt/CTF-CN photocatalyst exhibited excellent thermal and photocatalytic stability. Further, as a nitrogen-rich porous 2D material, CTF-CN represents a potential platform for the development of novel electrode material for fuel cells and metal ion batteries.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/7819049</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2935-880X</orcidid><orcidid>https://orcid.org/0000-0002-3296-3093</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0730-6679
ispartof Advances in polymer technology, 2020-01, Vol.2020 (2020), p.1-12
issn 0730-6679
1098-2329
language eng
recordid cdi_gale_infotracacademiconefile_A627597392
source DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; Alma/SFX Local Collection
subjects Carbon
Carbon nitride
Catalysis
Catalytic activity
Condensates
Cyano groups
Electrode materials
Energy gap
Energy storage
Fuel cells
Gas separation
Hydrogen
Hydrogen as fuel
Hydrogen production
Light
Materials selection
Nitriles
Nitrogen
Photocatalysis
Photocatalysts
Porosity
Porous materials
Spectrum analysis
Stability
Two dimensional materials
title A Nitrogen-Rich Covalent Triazine Framework as a Photocatalyst for Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nitrogen-Rich%20Covalent%20Triazine%20Framework%20as%20a%20Photocatalyst%20for%20Hydrogen%20Production&rft.jtitle=Advances%20in%20polymer%20technology&rft.au=Xu,%20Jing&rft.date=2020-01-01&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0730-6679&rft.eissn=1098-2329&rft_id=info:doi/10.1155/2020/7819049&rft_dat=%3Cgale_doaj_%3EA627597392%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2403867682&rft_id=info:pmid/&rft_galeid=A627597392&rft_doaj_id=oai_doaj_org_article_f548b9c9c8f64370b46077b217821e21&rfr_iscdi=true