Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies
The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention stra...
Gespeichert in:
Veröffentlicht in: | PeerJ (San Francisco, CA) CA), 2020-06, Vol.8, p.e9421-e9421, Article 9421 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e9421 |
---|---|
container_issue | |
container_start_page | e9421 |
container_title | PeerJ (San Francisco, CA) |
container_volume | 8 |
creator | Vasconcelos, Giovani L. Macedo, Antonio M. S. Ospina, Raydonal Almeida, Francisco A. G. Duarte-Filho, Gerson C. Brum, Arthur A. Souza, Ines C. L. |
description | The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions. |
doi_str_mv | 10.7717/peerj.9421 |
format | Article |
fullrecord | <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A627395142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627395142</galeid><doaj_id>oai_doaj_org_article_41b99da43b914a7aa715e5183bdf53a8</doaj_id><sourcerecordid>A627395142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-8accc9eff1ea1c3f37ac60516e84991864c6b5f2325c45ae45d7305c6adbff3c3</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIRKvSC79gJSSEQAn22l6vL0hV-IpU1Av0as16x4mjjR3W3qD-e7xJVRrEAftga_zMa8_4LYqXlMylpPL9DnHYzBWv6JPivKK1nDVMqKeP9mfFZYwbkkdT1aRhz4szVtW0ahQ_L26_hQ773vlVaSFB79JdacZhj7EMtlzc3C4_zqgqwXdlWmOJ1qJJbo8e44FwPmGmfXLBlzENkHDlML4onlnoI17erxfFj8-fvi--zq5vviwXV9czI7hMswaMMSqLUgRqmGUSTE0ErbHhStGm5qZuha1YJQwXgFx0khFhauhaa5lhF8XyqNsF2Ojd4LYw3OkATh8CYVhpGJIzPWpOW6U64KxVlIMEkFSgoA1rOysYNFnrw1FrN7Zb7EwuaoD-RPT0xLu1XoW9lowqwkgWeHMvMISfI8akty6a3F3wGMaoK06VpIwLldFXf6GbMA4-t2qiasI4aeo_1ApyAc7bkO81k6i-qivJlKC8ytT8H1SeHW6dCR6ty_GThNePEtYIfVrH0I_TH8ZT8O0RNEOIcUD70AxK9OQ-fXCfntyX4XdH-Be2wUbj0Bt8SMjuE7wiPBdGCGWZbv6fXrgE0-MWYfSJ_QbB5OqH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416034086</pqid></control><display><type>article</type><title>Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Vasconcelos, Giovani L. ; Macedo, Antonio M. S. ; Ospina, Raydonal ; Almeida, Francisco A. G. ; Duarte-Filho, Gerson C. ; Brum, Arthur A. ; Souza, Ines C. L.</creator><creatorcontrib>Vasconcelos, Giovani L. ; Macedo, Antonio M. S. ; Ospina, Raydonal ; Almeida, Francisco A. G. ; Duarte-Filho, Gerson C. ; Brum, Arthur A. ; Souza, Ines C. L.</creatorcontrib><description>The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.9421</identifier><identifier>PMID: 32612894</identifier><language>eng</language><publisher>LONDON: Peerj Inc</publisher><subject>Brazil ; Control ; Coronaviruses ; COVID-19 ; Disease transmission ; Efficiency ; Epidemics ; Epidemiology ; Estimates ; Evaluation ; Fatalities ; Fatality curve ; Global Health ; Infection control ; Infections ; Intervention ; Intervention strategies ; Mathematical Biology ; Mathematical models ; Mortality ; Multidisciplinary Sciences ; Outbreaks ; Patient outcomes ; Population ; Richards growth model ; Science & Technology ; Science & Technology - Other Topics ; Severe acute respiratory syndrome coronavirus 2</subject><ispartof>PeerJ (San Francisco, CA), 2020-06, Vol.8, p.e9421-e9421, Article 9421</ispartof><rights>COPYRIGHT 2020 PeerJ. Ltd.</rights><rights>2020 Vasconcelos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Vasconcelos et al. 2020 Vasconcelos et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542043400013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c547t-8accc9eff1ea1c3f37ac60516e84991864c6b5f2325c45ae45d7305c6adbff3c3</citedby><cites>FETCH-LOGICAL-c547t-8accc9eff1ea1c3f37ac60516e84991864c6b5f2325c45ae45d7305c6adbff3c3</cites><orcidid>0000-0002-4522-031X ; 0000-0002-9884-9090 ; 0000-0003-4975-4981 ; 0000-0001-6609-5960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319030/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319030/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids></links><search><creatorcontrib>Vasconcelos, Giovani L.</creatorcontrib><creatorcontrib>Macedo, Antonio M. S.</creatorcontrib><creatorcontrib>Ospina, Raydonal</creatorcontrib><creatorcontrib>Almeida, Francisco A. G.</creatorcontrib><creatorcontrib>Duarte-Filho, Gerson C.</creatorcontrib><creatorcontrib>Brum, Arthur A.</creatorcontrib><creatorcontrib>Souza, Ines C. L.</creatorcontrib><title>Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies</title><title>PeerJ (San Francisco, CA)</title><addtitle>PEERJ</addtitle><description>The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions.</description><subject>Brazil</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Efficiency</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Fatalities</subject><subject>Fatality curve</subject><subject>Global Health</subject><subject>Infection control</subject><subject>Infections</subject><subject>Intervention</subject><subject>Intervention strategies</subject><subject>Mathematical Biology</subject><subject>Mathematical models</subject><subject>Mortality</subject><subject>Multidisciplinary Sciences</subject><subject>Outbreaks</subject><subject>Patient outcomes</subject><subject>Population</subject><subject>Richards growth model</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhlcIRKvSC79gJSSEQAn22l6vL0hV-IpU1Av0as16x4mjjR3W3qD-e7xJVRrEAftga_zMa8_4LYqXlMylpPL9DnHYzBWv6JPivKK1nDVMqKeP9mfFZYwbkkdT1aRhz4szVtW0ahQ_L26_hQ773vlVaSFB79JdacZhj7EMtlzc3C4_zqgqwXdlWmOJ1qJJbo8e44FwPmGmfXLBlzENkHDlML4onlnoI17erxfFj8-fvi--zq5vviwXV9czI7hMswaMMSqLUgRqmGUSTE0ErbHhStGm5qZuha1YJQwXgFx0khFhauhaa5lhF8XyqNsF2Ojd4LYw3OkATh8CYVhpGJIzPWpOW6U64KxVlIMEkFSgoA1rOysYNFnrw1FrN7Zb7EwuaoD-RPT0xLu1XoW9lowqwkgWeHMvMISfI8akty6a3F3wGMaoK06VpIwLldFXf6GbMA4-t2qiasI4aeo_1ApyAc7bkO81k6i-qivJlKC8ytT8H1SeHW6dCR6ty_GThNePEtYIfVrH0I_TH8ZT8O0RNEOIcUD70AxK9OQ-fXCfntyX4XdH-Be2wUbj0Bt8SMjuE7wiPBdGCGWZbv6fXrgE0-MWYfSJ_QbB5OqH</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Vasconcelos, Giovani L.</creator><creator>Macedo, Antonio M. S.</creator><creator>Ospina, Raydonal</creator><creator>Almeida, Francisco A. G.</creator><creator>Duarte-Filho, Gerson C.</creator><creator>Brum, Arthur A.</creator><creator>Souza, Ines C. L.</creator><general>Peerj Inc</general><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4522-031X</orcidid><orcidid>https://orcid.org/0000-0002-9884-9090</orcidid><orcidid>https://orcid.org/0000-0003-4975-4981</orcidid><orcidid>https://orcid.org/0000-0001-6609-5960</orcidid></search><sort><creationdate>20200623</creationdate><title>Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies</title><author>Vasconcelos, Giovani L. ; Macedo, Antonio M. S. ; Ospina, Raydonal ; Almeida, Francisco A. G. ; Duarte-Filho, Gerson C. ; Brum, Arthur A. ; Souza, Ines C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-8accc9eff1ea1c3f37ac60516e84991864c6b5f2325c45ae45d7305c6adbff3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brazil</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Efficiency</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Fatalities</topic><topic>Fatality curve</topic><topic>Global Health</topic><topic>Infection control</topic><topic>Infections</topic><topic>Intervention</topic><topic>Intervention strategies</topic><topic>Mathematical Biology</topic><topic>Mathematical models</topic><topic>Mortality</topic><topic>Multidisciplinary Sciences</topic><topic>Outbreaks</topic><topic>Patient outcomes</topic><topic>Population</topic><topic>Richards growth model</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasconcelos, Giovani L.</creatorcontrib><creatorcontrib>Macedo, Antonio M. S.</creatorcontrib><creatorcontrib>Ospina, Raydonal</creatorcontrib><creatorcontrib>Almeida, Francisco A. G.</creatorcontrib><creatorcontrib>Duarte-Filho, Gerson C.</creatorcontrib><creatorcontrib>Brum, Arthur A.</creatorcontrib><creatorcontrib>Souza, Ines C. L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasconcelos, Giovani L.</au><au>Macedo, Antonio M. S.</au><au>Ospina, Raydonal</au><au>Almeida, Francisco A. G.</au><au>Duarte-Filho, Gerson C.</au><au>Brum, Arthur A.</au><au>Souza, Ines C. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><stitle>PEERJ</stitle><date>2020-06-23</date><risdate>2020</risdate><volume>8</volume><spage>e9421</spage><epage>e9421</epage><pages>e9421-e9421</pages><artnum>9421</artnum><artnum>e9421</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions.</abstract><cop>LONDON</cop><pub>Peerj Inc</pub><pmid>32612894</pmid><doi>10.7717/peerj.9421</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4522-031X</orcidid><orcidid>https://orcid.org/0000-0002-9884-9090</orcidid><orcidid>https://orcid.org/0000-0003-4975-4981</orcidid><orcidid>https://orcid.org/0000-0001-6609-5960</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2167-8359 |
ispartof | PeerJ (San Francisco, CA), 2020-06, Vol.8, p.e9421-e9421, Article 9421 |
issn | 2167-8359 2167-8359 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A627395142 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | Brazil Control Coronaviruses COVID-19 Disease transmission Efficiency Epidemics Epidemiology Estimates Evaluation Fatalities Fatality curve Global Health Infection control Infections Intervention Intervention strategies Mathematical Biology Mathematical models Mortality Multidisciplinary Sciences Outbreaks Patient outcomes Population Richards growth model Science & Technology Science & Technology - Other Topics Severe acute respiratory syndrome coronavirus 2 |
title | Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20fatality%20curves%20of%20COVID-19%20and%20the%20effectiveness%20of%20intervention%20strategies&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Vasconcelos,%20Giovani%20L.&rft.date=2020-06-23&rft.volume=8&rft.spage=e9421&rft.epage=e9421&rft.pages=e9421-e9421&rft.artnum=9421&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.9421&rft_dat=%3Cgale_webof%3EA627395142%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416034086&rft_id=info:pmid/32612894&rft_galeid=A627395142&rft_doaj_id=oai_doaj_org_article_41b99da43b914a7aa715e5183bdf53a8&rfr_iscdi=true |