Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies

The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PeerJ (San Francisco, CA) CA), 2020-06, Vol.8, p.e9421-e9421, Article 9421
Hauptverfasser: Vasconcelos, Giovani L., Macedo, Antonio M. S., Ospina, Raydonal, Almeida, Francisco A. G., Duarte-Filho, Gerson C., Brum, Arthur A., Souza, Ines C. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e9421
container_issue
container_start_page e9421
container_title PeerJ (San Francisco, CA)
container_volume 8
creator Vasconcelos, Giovani L.
Macedo, Antonio M. S.
Ospina, Raydonal
Almeida, Francisco A. G.
Duarte-Filho, Gerson C.
Brum, Arthur A.
Souza, Ines C. L.
description The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions.
doi_str_mv 10.7717/peerj.9421
format Article
fullrecord <record><control><sourceid>gale_webof</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A627395142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627395142</galeid><doaj_id>oai_doaj_org_article_41b99da43b914a7aa715e5183bdf53a8</doaj_id><sourcerecordid>A627395142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-8accc9eff1ea1c3f37ac60516e84991864c6b5f2325c45ae45d7305c6adbff3c3</originalsourceid><addsrcrecordid>eNqNkk1vEzEQhlcIRKvSC79gJSSEQAn22l6vL0hV-IpU1Av0as16x4mjjR3W3qD-e7xJVRrEAftga_zMa8_4LYqXlMylpPL9DnHYzBWv6JPivKK1nDVMqKeP9mfFZYwbkkdT1aRhz4szVtW0ahQ_L26_hQ773vlVaSFB79JdacZhj7EMtlzc3C4_zqgqwXdlWmOJ1qJJbo8e44FwPmGmfXLBlzENkHDlML4onlnoI17erxfFj8-fvi--zq5vviwXV9czI7hMswaMMSqLUgRqmGUSTE0ErbHhStGm5qZuha1YJQwXgFx0khFhauhaa5lhF8XyqNsF2Ojd4LYw3OkATh8CYVhpGJIzPWpOW6U64KxVlIMEkFSgoA1rOysYNFnrw1FrN7Zb7EwuaoD-RPT0xLu1XoW9lowqwkgWeHMvMISfI8akty6a3F3wGMaoK06VpIwLldFXf6GbMA4-t2qiasI4aeo_1ApyAc7bkO81k6i-qivJlKC8ytT8H1SeHW6dCR6ty_GThNePEtYIfVrH0I_TH8ZT8O0RNEOIcUD70AxK9OQ-fXCfntyX4XdH-Be2wUbj0Bt8SMjuE7wiPBdGCGWZbv6fXrgE0-MWYfSJ_QbB5OqH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416034086</pqid></control><display><type>article</type><title>Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><creator>Vasconcelos, Giovani L. ; Macedo, Antonio M. S. ; Ospina, Raydonal ; Almeida, Francisco A. G. ; Duarte-Filho, Gerson C. ; Brum, Arthur A. ; Souza, Ines C. L.</creator><creatorcontrib>Vasconcelos, Giovani L. ; Macedo, Antonio M. S. ; Ospina, Raydonal ; Almeida, Francisco A. G. ; Duarte-Filho, Gerson C. ; Brum, Arthur A. ; Souza, Ines C. L.</creatorcontrib><description>The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions.</description><identifier>ISSN: 2167-8359</identifier><identifier>EISSN: 2167-8359</identifier><identifier>DOI: 10.7717/peerj.9421</identifier><identifier>PMID: 32612894</identifier><language>eng</language><publisher>LONDON: Peerj Inc</publisher><subject>Brazil ; Control ; Coronaviruses ; COVID-19 ; Disease transmission ; Efficiency ; Epidemics ; Epidemiology ; Estimates ; Evaluation ; Fatalities ; Fatality curve ; Global Health ; Infection control ; Infections ; Intervention ; Intervention strategies ; Mathematical Biology ; Mathematical models ; Mortality ; Multidisciplinary Sciences ; Outbreaks ; Patient outcomes ; Population ; Richards growth model ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Severe acute respiratory syndrome coronavirus 2</subject><ispartof>PeerJ (San Francisco, CA), 2020-06, Vol.8, p.e9421-e9421, Article 9421</ispartof><rights>COPYRIGHT 2020 PeerJ. Ltd.</rights><rights>2020 Vasconcelos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 Vasconcelos et al. 2020 Vasconcelos et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>32</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000542043400013</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c547t-8accc9eff1ea1c3f37ac60516e84991864c6b5f2325c45ae45d7305c6adbff3c3</citedby><cites>FETCH-LOGICAL-c547t-8accc9eff1ea1c3f37ac60516e84991864c6b5f2325c45ae45d7305c6adbff3c3</cites><orcidid>0000-0002-4522-031X ; 0000-0002-9884-9090 ; 0000-0003-4975-4981 ; 0000-0001-6609-5960</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319030/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319030/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28253,53796,53798</link.rule.ids></links><search><creatorcontrib>Vasconcelos, Giovani L.</creatorcontrib><creatorcontrib>Macedo, Antonio M. S.</creatorcontrib><creatorcontrib>Ospina, Raydonal</creatorcontrib><creatorcontrib>Almeida, Francisco A. G.</creatorcontrib><creatorcontrib>Duarte-Filho, Gerson C.</creatorcontrib><creatorcontrib>Brum, Arthur A.</creatorcontrib><creatorcontrib>Souza, Ines C. L.</creatorcontrib><title>Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies</title><title>PeerJ (San Francisco, CA)</title><addtitle>PEERJ</addtitle><description>The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions.</description><subject>Brazil</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Efficiency</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Fatalities</subject><subject>Fatality curve</subject><subject>Global Health</subject><subject>Infection control</subject><subject>Infections</subject><subject>Intervention</subject><subject>Intervention strategies</subject><subject>Mathematical Biology</subject><subject>Mathematical models</subject><subject>Mortality</subject><subject>Multidisciplinary Sciences</subject><subject>Outbreaks</subject><subject>Patient outcomes</subject><subject>Population</subject><subject>Richards growth model</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><issn>2167-8359</issn><issn>2167-8359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1vEzEQhlcIRKvSC79gJSSEQAn22l6vL0hV-IpU1Av0as16x4mjjR3W3qD-e7xJVRrEAftga_zMa8_4LYqXlMylpPL9DnHYzBWv6JPivKK1nDVMqKeP9mfFZYwbkkdT1aRhz4szVtW0ahQ_L26_hQ773vlVaSFB79JdacZhj7EMtlzc3C4_zqgqwXdlWmOJ1qJJbo8e44FwPmGmfXLBlzENkHDlML4onlnoI17erxfFj8-fvi--zq5vviwXV9czI7hMswaMMSqLUgRqmGUSTE0ErbHhStGm5qZuha1YJQwXgFx0khFhauhaa5lhF8XyqNsF2Ojd4LYw3OkATh8CYVhpGJIzPWpOW6U64KxVlIMEkFSgoA1rOysYNFnrw1FrN7Zb7EwuaoD-RPT0xLu1XoW9lowqwkgWeHMvMISfI8akty6a3F3wGMaoK06VpIwLldFXf6GbMA4-t2qiasI4aeo_1ApyAc7bkO81k6i-qivJlKC8ytT8H1SeHW6dCR6ty_GThNePEtYIfVrH0I_TH8ZT8O0RNEOIcUD70AxK9OQ-fXCfntyX4XdH-Be2wUbj0Bt8SMjuE7wiPBdGCGWZbv6fXrgE0-MWYfSJ_QbB5OqH</recordid><startdate>20200623</startdate><enddate>20200623</enddate><creator>Vasconcelos, Giovani L.</creator><creator>Macedo, Antonio M. S.</creator><creator>Ospina, Raydonal</creator><creator>Almeida, Francisco A. G.</creator><creator>Duarte-Filho, Gerson C.</creator><creator>Brum, Arthur A.</creator><creator>Souza, Ines C. L.</creator><general>Peerj Inc</general><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4522-031X</orcidid><orcidid>https://orcid.org/0000-0002-9884-9090</orcidid><orcidid>https://orcid.org/0000-0003-4975-4981</orcidid><orcidid>https://orcid.org/0000-0001-6609-5960</orcidid></search><sort><creationdate>20200623</creationdate><title>Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies</title><author>Vasconcelos, Giovani L. ; Macedo, Antonio M. S. ; Ospina, Raydonal ; Almeida, Francisco A. G. ; Duarte-Filho, Gerson C. ; Brum, Arthur A. ; Souza, Ines C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-8accc9eff1ea1c3f37ac60516e84991864c6b5f2325c45ae45d7305c6adbff3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Brazil</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Efficiency</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Fatalities</topic><topic>Fatality curve</topic><topic>Global Health</topic><topic>Infection control</topic><topic>Infections</topic><topic>Intervention</topic><topic>Intervention strategies</topic><topic>Mathematical Biology</topic><topic>Mathematical models</topic><topic>Mortality</topic><topic>Multidisciplinary Sciences</topic><topic>Outbreaks</topic><topic>Patient outcomes</topic><topic>Population</topic><topic>Richards growth model</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasconcelos, Giovani L.</creatorcontrib><creatorcontrib>Macedo, Antonio M. S.</creatorcontrib><creatorcontrib>Ospina, Raydonal</creatorcontrib><creatorcontrib>Almeida, Francisco A. G.</creatorcontrib><creatorcontrib>Duarte-Filho, Gerson C.</creatorcontrib><creatorcontrib>Brum, Arthur A.</creatorcontrib><creatorcontrib>Souza, Ines C. L.</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ (San Francisco, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasconcelos, Giovani L.</au><au>Macedo, Antonio M. S.</au><au>Ospina, Raydonal</au><au>Almeida, Francisco A. G.</au><au>Duarte-Filho, Gerson C.</au><au>Brum, Arthur A.</au><au>Souza, Ines C. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies</atitle><jtitle>PeerJ (San Francisco, CA)</jtitle><stitle>PEERJ</stitle><date>2020-06-23</date><risdate>2020</risdate><volume>8</volume><spage>e9421</spage><epage>e9421</epage><pages>e9421-e9421</pages><artnum>9421</artnum><artnum>e9421</artnum><issn>2167-8359</issn><eissn>2167-8359</eissn><abstract>The main objective of the present article is twofold: first, to model the fatality curves of the COVID-19 disease, as represented by the cumulative number of deaths as a function of time; and second, to use the corresponding mathematical model to study the effectiveness of possible intervention strategies. We applied the Richards growth model (RGM) to the COVID-19 fatality curves from several countries, where we used the data from the Johns Hopkins University database up to May 8, 2020. Countries selected for analysis with the RGM were China, France, Germany, Iran, Italy, South Korea, and Spain. The RGM was shown to describe very well the fatality curves of China, which is in a late stage of the COVID-19 outbreak, as well as of the other above countries, which supposedly are in the middle or towards the end of the outbreak at the time of this writing. We also analysed the case of Brazil, which is in an initial sub-exponential growth regime, and so we used the generalised growth model which is more appropriate for such cases. An analytic formula for the efficiency of intervention strategies within the context of the RGM is derived. Our findings show that there is only a narrow window of opportunity, after the onset of the epidemic, during which effective countermeasures can be taken. We applied our intervention model to the COVID-19 fatality curve of Italy of the outbreak to illustrate the effect of several possible interventions.</abstract><cop>LONDON</cop><pub>Peerj Inc</pub><pmid>32612894</pmid><doi>10.7717/peerj.9421</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4522-031X</orcidid><orcidid>https://orcid.org/0000-0002-9884-9090</orcidid><orcidid>https://orcid.org/0000-0003-4975-4981</orcidid><orcidid>https://orcid.org/0000-0001-6609-5960</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2167-8359
ispartof PeerJ (San Francisco, CA), 2020-06, Vol.8, p.e9421-e9421, Article 9421
issn 2167-8359
2167-8359
language eng
recordid cdi_gale_infotracacademiconefile_A627395142
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central
subjects Brazil
Control
Coronaviruses
COVID-19
Disease transmission
Efficiency
Epidemics
Epidemiology
Estimates
Evaluation
Fatalities
Fatality curve
Global Health
Infection control
Infections
Intervention
Intervention strategies
Mathematical Biology
Mathematical models
Mortality
Multidisciplinary Sciences
Outbreaks
Patient outcomes
Population
Richards growth model
Science & Technology
Science & Technology - Other Topics
Severe acute respiratory syndrome coronavirus 2
title Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20fatality%20curves%20of%20COVID-19%20and%20the%20effectiveness%20of%20intervention%20strategies&rft.jtitle=PeerJ%20(San%20Francisco,%20CA)&rft.au=Vasconcelos,%20Giovani%20L.&rft.date=2020-06-23&rft.volume=8&rft.spage=e9421&rft.epage=e9421&rft.pages=e9421-e9421&rft.artnum=9421&rft.issn=2167-8359&rft.eissn=2167-8359&rft_id=info:doi/10.7717/peerj.9421&rft_dat=%3Cgale_webof%3EA627395142%3C/gale_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416034086&rft_id=info:pmid/32612894&rft_galeid=A627395142&rft_doaj_id=oai_doaj_org_article_41b99da43b914a7aa715e5183bdf53a8&rfr_iscdi=true