A $p$-adic Analytic Approach to the Absolute Grothendieck Conjecture

Let $K$ be a field, $G_K$ the absolute Galois group of $K$, $X$ a hyperbolic curve over $K$ and $\pi_1(X)$ the \'{e}tale fundamental group of $X$. The absolute Grothendieck conjecture in anabelian geometry asks the following question: Is it possible to recover $X$ group-theoretically, solely fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Research Institute for Mathematical Sciences 2019-01, Vol.55 (2), p.401-451
1. Verfasser: Murotani, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 2
container_start_page 401
container_title Publications of the Research Institute for Mathematical Sciences
container_volume 55
creator Murotani, Takahiro
description Let $K$ be a field, $G_K$ the absolute Galois group of $K$, $X$ a hyperbolic curve over $K$ and $\pi_1(X)$ the \'{e}tale fundamental group of $X$. The absolute Grothendieck conjecture in anabelian geometry asks the following question: Is it possible to recover $X$ group-theoretically, solely from $\pi_1(X)$ (not $\pi_1(X)\twoheadrightarrow G_K$)? When $K$ is a $p$-adic field (i.e., a finite extension of $\mathbb{Q}_p$), this conjecture (called the $p$-adic absolute Grothendieck conjecture) is unsolved. To approach this problem, we introduce a certain $p$-adic analytic invariant defined by Serre (which we call $i$-invariant). Then the absolute $p$-adic Grothendieck conjecture can be reduced to the following problems: (A) determining whether a proper hyperbolic curve admits a rational point from the data of the $i$-invariants of the sets of rational points of the curve and its coverings; (B) recovering the $i$-invariant of the set of rational points of a proper hyperbolic curve group-theoretically. The main results of the present paper give a complete affirmative answer to (A) and a partial affirmative answer to (B).
doi_str_mv 10.4171/PRIMS/55-2-6
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A622804864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A622804864</galeid><sourcerecordid>A622804864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-eeb32168fe893e734a8c03eb0ef2afc7da721250a3dbf78e52bbbdad6e7db5063</originalsourceid><addsrcrecordid>eNo9UEtPwkAY3BhNRPTmD-iBgwcX9t1ybFCRRKPxcW728a0US5fslgP_3gJqvsN8M5mZwyB0TclY0JxOXt8Wz-8TKTHD6gQNqFIciylTp2hACBdYclqco4uUVoQIOWVigO7KbLQZYe1qm5Wtbnbd_tlsYtB2mXUh65aQlSaFZttBNo-h562rwX5ns9CuwHbbCJfozOsmwdUvDtHnw_3H7BE_vcwXs_IJW0FphwEMZ1QVHooph5wLXVjCwRDwTHubO50zyiTR3BmfFyCZMcZppyB3RhLFh2h87P3SDVR160MXte3Pwbq2oQVf93qpGCuIKJToA7fHgI0hpQi-2sR6reOuoqTaT3bgqZKyYtW-_-Zoh15bhW3sB0n_1sO6f9Yf_FZsdg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A $p$-adic Analytic Approach to the Absolute Grothendieck Conjecture</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>European Mathematical Society Publishing House</source><creator>Murotani, Takahiro</creator><creatorcontrib>Murotani, Takahiro</creatorcontrib><description>Let $K$ be a field, $G_K$ the absolute Galois group of $K$, $X$ a hyperbolic curve over $K$ and $\pi_1(X)$ the \'{e}tale fundamental group of $X$. The absolute Grothendieck conjecture in anabelian geometry asks the following question: Is it possible to recover $X$ group-theoretically, solely from $\pi_1(X)$ (not $\pi_1(X)\twoheadrightarrow G_K$)? When $K$ is a $p$-adic field (i.e., a finite extension of $\mathbb{Q}_p$), this conjecture (called the $p$-adic absolute Grothendieck conjecture) is unsolved. To approach this problem, we introduce a certain $p$-adic analytic invariant defined by Serre (which we call $i$-invariant). Then the absolute $p$-adic Grothendieck conjecture can be reduced to the following problems: (A) determining whether a proper hyperbolic curve admits a rational point from the data of the $i$-invariants of the sets of rational points of the curve and its coverings; (B) recovering the $i$-invariant of the set of rational points of a proper hyperbolic curve group-theoretically. The main results of the present paper give a complete affirmative answer to (A) and a partial affirmative answer to (B).</description><identifier>ISSN: 0034-5318</identifier><identifier>EISSN: 1663-4926</identifier><identifier>DOI: 10.4171/PRIMS/55-2-6</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Algebraic geometry ; Number theory</subject><ispartof>Publications of the Research Institute for Mathematical Sciences, 2019-01, Vol.55 (2), p.401-451</ispartof><rights>Research Institute for Mathematical Sciences, Kyoto University</rights><rights>COPYRIGHT 2019 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-eeb32168fe893e734a8c03eb0ef2afc7da721250a3dbf78e52bbbdad6e7db5063</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,24032,27901,27902</link.rule.ids></links><search><creatorcontrib>Murotani, Takahiro</creatorcontrib><title>A $p$-adic Analytic Approach to the Absolute Grothendieck Conjecture</title><title>Publications of the Research Institute for Mathematical Sciences</title><addtitle>Publ. Res. Inst. Math. Sci</addtitle><description>Let $K$ be a field, $G_K$ the absolute Galois group of $K$, $X$ a hyperbolic curve over $K$ and $\pi_1(X)$ the \'{e}tale fundamental group of $X$. The absolute Grothendieck conjecture in anabelian geometry asks the following question: Is it possible to recover $X$ group-theoretically, solely from $\pi_1(X)$ (not $\pi_1(X)\twoheadrightarrow G_K$)? When $K$ is a $p$-adic field (i.e., a finite extension of $\mathbb{Q}_p$), this conjecture (called the $p$-adic absolute Grothendieck conjecture) is unsolved. To approach this problem, we introduce a certain $p$-adic analytic invariant defined by Serre (which we call $i$-invariant). Then the absolute $p$-adic Grothendieck conjecture can be reduced to the following problems: (A) determining whether a proper hyperbolic curve admits a rational point from the data of the $i$-invariants of the sets of rational points of the curve and its coverings; (B) recovering the $i$-invariant of the set of rational points of a proper hyperbolic curve group-theoretically. The main results of the present paper give a complete affirmative answer to (A) and a partial affirmative answer to (B).</description><subject>Algebraic geometry</subject><subject>Number theory</subject><issn>0034-5318</issn><issn>1663-4926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UEtPwkAY3BhNRPTmD-iBgwcX9t1ybFCRRKPxcW728a0US5fslgP_3gJqvsN8M5mZwyB0TclY0JxOXt8Wz-8TKTHD6gQNqFIciylTp2hACBdYclqco4uUVoQIOWVigO7KbLQZYe1qm5Wtbnbd_tlsYtB2mXUh65aQlSaFZttBNo-h562rwX5ns9CuwHbbCJfozOsmwdUvDtHnw_3H7BE_vcwXs_IJW0FphwEMZ1QVHooph5wLXVjCwRDwTHubO50zyiTR3BmfFyCZMcZppyB3RhLFh2h87P3SDVR160MXte3Pwbq2oQVf93qpGCuIKJToA7fHgI0hpQi-2sR6reOuoqTaT3bgqZKyYtW-_-Zoh15bhW3sB0n_1sO6f9Yf_FZsdg</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Murotani, Takahiro</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190101</creationdate><title>A $p$-adic Analytic Approach to the Absolute Grothendieck Conjecture</title><author>Murotani, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-eeb32168fe893e734a8c03eb0ef2afc7da721250a3dbf78e52bbbdad6e7db5063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebraic geometry</topic><topic>Number theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murotani, Takahiro</creatorcontrib><collection>CrossRef</collection><jtitle>Publications of the Research Institute for Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murotani, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A $p$-adic Analytic Approach to the Absolute Grothendieck Conjecture</atitle><jtitle>Publications of the Research Institute for Mathematical Sciences</jtitle><addtitle>Publ. Res. Inst. Math. Sci</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>55</volume><issue>2</issue><spage>401</spage><epage>451</epage><pages>401-451</pages><issn>0034-5318</issn><eissn>1663-4926</eissn><abstract>Let $K$ be a field, $G_K$ the absolute Galois group of $K$, $X$ a hyperbolic curve over $K$ and $\pi_1(X)$ the \'{e}tale fundamental group of $X$. The absolute Grothendieck conjecture in anabelian geometry asks the following question: Is it possible to recover $X$ group-theoretically, solely from $\pi_1(X)$ (not $\pi_1(X)\twoheadrightarrow G_K$)? When $K$ is a $p$-adic field (i.e., a finite extension of $\mathbb{Q}_p$), this conjecture (called the $p$-adic absolute Grothendieck conjecture) is unsolved. To approach this problem, we introduce a certain $p$-adic analytic invariant defined by Serre (which we call $i$-invariant). Then the absolute $p$-adic Grothendieck conjecture can be reduced to the following problems: (A) determining whether a proper hyperbolic curve admits a rational point from the data of the $i$-invariants of the sets of rational points of the curve and its coverings; (B) recovering the $i$-invariant of the set of rational points of a proper hyperbolic curve group-theoretically. The main results of the present paper give a complete affirmative answer to (A) and a partial affirmative answer to (B).</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/PRIMS/55-2-6</doi><tpages>51</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0034-5318
ispartof Publications of the Research Institute for Mathematical Sciences, 2019-01, Vol.55 (2), p.401-451
issn 0034-5318
1663-4926
language eng
recordid cdi_gale_infotracacademiconefile_A622804864
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; European Mathematical Society Publishing House
subjects Algebraic geometry
Number theory
title A $p$-adic Analytic Approach to the Absolute Grothendieck Conjecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20$p$-adic%20Analytic%20Approach%20to%20the%20Absolute%20Grothendieck%20Conjecture&rft.jtitle=Publications%20of%20the%20Research%20Institute%20for%20Mathematical%20Sciences&rft.au=Murotani,%20Takahiro&rft.date=2019-01-01&rft.volume=55&rft.issue=2&rft.spage=401&rft.epage=451&rft.pages=401-451&rft.issn=0034-5318&rft.eissn=1663-4926&rft_id=info:doi/10.4171/PRIMS/55-2-6&rft_dat=%3Cgale_cross%3EA622804864%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A622804864&rfr_iscdi=true