Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing
CRISPR–Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR–Cas9-mediated homology-independent organoid transgenesis (CRI...
Gespeichert in:
Veröffentlicht in: | Nature cell biology 2020-03, Vol.22 (3), p.321-331 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | 3 |
container_start_page | 321 |
container_title | Nature cell biology |
container_volume | 22 |
creator | Artegiani, Benedetta Hendriks, Delilah Beumer, Joep Kok, Rutger Zheng, Xuan Joore, Indi Chuva de Sousa Lopes, Susana van Zon, Jeroen Tans, Sander Clevers, Hans |
description | CRISPR–Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR–Cas9-mediated homology-independent organoid transgenesis (CRISPR–HOT), which enables efficient generation of knock-in human organoids representing different tissues. CRISPR–HOT avoids extensive cloning and outperforms homology directed repair (HDR) in achieving precise integration of exogenous DNA sequences into desired loci, without the necessity to inactivate TP53 in untransformed cells, which was previously used to increase HDR-mediated knock-in. CRISPR–HOT was used to fluorescently tag and visualize subcellular structural molecules and to generate reporter lines for rare intestinal cell types. A double reporter—in which the mitotic spindle was labelled by endogenously tagged tubulin and the cell membrane by endogenously tagged E-cadherin—uncovered modes of human hepatocyte division. Combining tubulin tagging with
TP53
knock-out revealed that TP53 is involved in controlling hepatocyte ploidy and mitotic spindle fidelity. CRISPR–HOT simplifies genome editing in human organoids.
Artegiani, Hendriks et al. describe a CRISPR–Cas9-based method to efficiently generate human knock-in organoids using non-homologous end joining to study rare intestinal cell types and human hepatocyte division. |
doi_str_mv | 10.1038/s41556-020-0472-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A618256944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A618256944</galeid><sourcerecordid>A618256944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c582t-cab56417e3a7c5a88708b0d60d8a9f0949cf296f879628ab4baaaf93455e13523</originalsourceid><addsrcrecordid>eNqNkt-K1DAUxoso7jr6AN5IwRtFuuZvk14uxdWBBWVWr0OannSzO03GpkUXb3wH39AnMbXjyoiCBJLD4fd9nBy-LHuM0QlGVL6MDHNeFoigAjFBCn4nO8ZMlAUrRXV3rkteCFqRo-xBjFcIYcaQuJ8dUYIJpZQfZ1_OdBxz7dscrHXGgR_zDjwMenTB58Hm1z6Y68L5_HLqdeoMnfbBtTGfovNdfhn6sA3dTSJa2EG6kkO9WV-823z_-q3Wscp3AxgXZ7vkHHrIoXVj0j7M7lm9jfBo_66yD2ev3tdvivO3r9f16XlhuCRjYXTDS4YFUC0M11IKJBvUlqiVurKoYpWxpCqtFFVJpG5Yo7W2FWWcA6ac0FX2bPHdDeHjBHFUvYsGtlvtIUxRESoQqwhJO11lT_9Ar8I0-DTdTBFZ7g33VKe3oJy3YRy0mU3VaYkl4WXFWKJO_kKl00LvTPBgXeofCJ4fCBIzwuex01OMan2xOWTxwpohxDiAVbvB9Xq4URipORxqCYdK4VBzOBRPmif7z01ND-2t4lcaEvBiAT5BE2yc02DgFkMIcSwEozJVaN6C_H-6duPPRNVh8mOSkkUaE-47GH6v-d_j_wA6LuPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372861352</pqid></control><display><type>article</type><title>Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing</title><source>MEDLINE</source><source>Nature</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><creator>Artegiani, Benedetta ; Hendriks, Delilah ; Beumer, Joep ; Kok, Rutger ; Zheng, Xuan ; Joore, Indi ; Chuva de Sousa Lopes, Susana ; van Zon, Jeroen ; Tans, Sander ; Clevers, Hans</creator><creatorcontrib>Artegiani, Benedetta ; Hendriks, Delilah ; Beumer, Joep ; Kok, Rutger ; Zheng, Xuan ; Joore, Indi ; Chuva de Sousa Lopes, Susana ; van Zon, Jeroen ; Tans, Sander ; Clevers, Hans</creatorcontrib><description>CRISPR–Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR–Cas9-mediated homology-independent organoid transgenesis (CRISPR–HOT), which enables efficient generation of knock-in human organoids representing different tissues. CRISPR–HOT avoids extensive cloning and outperforms homology directed repair (HDR) in achieving precise integration of exogenous DNA sequences into desired loci, without the necessity to inactivate TP53 in untransformed cells, which was previously used to increase HDR-mediated knock-in. CRISPR–HOT was used to fluorescently tag and visualize subcellular structural molecules and to generate reporter lines for rare intestinal cell types. A double reporter—in which the mitotic spindle was labelled by endogenously tagged tubulin and the cell membrane by endogenously tagged E-cadherin—uncovered modes of human hepatocyte division. Combining tubulin tagging with
TP53
knock-out revealed that TP53 is involved in controlling hepatocyte ploidy and mitotic spindle fidelity. CRISPR–HOT simplifies genome editing in human organoids.
Artegiani, Hendriks et al. describe a CRISPR–Cas9-based method to efficiently generate human knock-in organoids using non-homologous end joining to study rare intestinal cell types and human hepatocyte division.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-020-0472-5</identifier><identifier>PMID: 32123335</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/106 ; 13/107 ; 13/31 ; 38/109 ; 42/35 ; 42/44 ; 42/70 ; 45/100 ; 45/41 ; 631/1647/1511 ; 631/337/4041/3196 ; 631/532 ; 631/61/2320 ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell membranes ; Cloning ; CRISPR ; CRISPR-Cas Systems ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; E-cadherin ; Editing ; Gene Editing ; Gene Knock-In Techniques - methods ; Gene sequencing ; Genetic aspects ; Genome editing ; Genomes ; Genomics ; Health aspects ; Hepatocytes - cytology ; Hepatocytes - ultrastructure ; Homology ; Homology (Biology) ; Humans ; Integration ; Intestine ; Intestines - cytology ; Life Sciences ; Life Sciences & Biomedicine ; Liver - cytology ; Liver cells ; Non-homologous end joining ; Nucleotide sequence ; Organoids ; Organoids - cytology ; Organoids - ultrastructure ; p53 Protein ; Ploidy ; Science & Technology ; Spindle (Cell division) ; Spindle Apparatus - ultrastructure ; Stem Cells ; technical-report ; Tubulin ; Tumor Suppressor Protein p53 - physiology</subject><ispartof>Nature cell biology, 2020-03, Vol.22 (3), p.321-331</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>159</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000517743800002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c582t-cab56417e3a7c5a88708b0d60d8a9f0949cf296f879628ab4baaaf93455e13523</citedby><cites>FETCH-LOGICAL-c582t-cab56417e3a7c5a88708b0d60d8a9f0949cf296f879628ab4baaaf93455e13523</cites><orcidid>0000-0002-3077-5582 ; 0000-0003-3866-2803 ; 0000-0002-6214-681X ; 0000-0002-0904-4187 ; 0000-0003-1159-5946 ; 0000-0002-1700-9082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27933,27934,28257</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32123335$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Artegiani, Benedetta</creatorcontrib><creatorcontrib>Hendriks, Delilah</creatorcontrib><creatorcontrib>Beumer, Joep</creatorcontrib><creatorcontrib>Kok, Rutger</creatorcontrib><creatorcontrib>Zheng, Xuan</creatorcontrib><creatorcontrib>Joore, Indi</creatorcontrib><creatorcontrib>Chuva de Sousa Lopes, Susana</creatorcontrib><creatorcontrib>van Zon, Jeroen</creatorcontrib><creatorcontrib>Tans, Sander</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><title>Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>NAT CELL BIOL</addtitle><addtitle>Nat Cell Biol</addtitle><description>CRISPR–Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR–Cas9-mediated homology-independent organoid transgenesis (CRISPR–HOT), which enables efficient generation of knock-in human organoids representing different tissues. CRISPR–HOT avoids extensive cloning and outperforms homology directed repair (HDR) in achieving precise integration of exogenous DNA sequences into desired loci, without the necessity to inactivate TP53 in untransformed cells, which was previously used to increase HDR-mediated knock-in. CRISPR–HOT was used to fluorescently tag and visualize subcellular structural molecules and to generate reporter lines for rare intestinal cell types. A double reporter—in which the mitotic spindle was labelled by endogenously tagged tubulin and the cell membrane by endogenously tagged E-cadherin—uncovered modes of human hepatocyte division. Combining tubulin tagging with
TP53
knock-out revealed that TP53 is involved in controlling hepatocyte ploidy and mitotic spindle fidelity. CRISPR–HOT simplifies genome editing in human organoids.
Artegiani, Hendriks et al. describe a CRISPR–Cas9-based method to efficiently generate human knock-in organoids using non-homologous end joining to study rare intestinal cell types and human hepatocyte division.</description><subject>13/1</subject><subject>13/106</subject><subject>13/107</subject><subject>13/31</subject><subject>38/109</subject><subject>42/35</subject><subject>42/44</subject><subject>42/70</subject><subject>45/100</subject><subject>45/41</subject><subject>631/1647/1511</subject><subject>631/337/4041/3196</subject><subject>631/532</subject><subject>631/61/2320</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell membranes</subject><subject>Cloning</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>E-cadherin</subject><subject>Editing</subject><subject>Gene Editing</subject><subject>Gene Knock-In Techniques - methods</subject><subject>Gene sequencing</subject><subject>Genetic aspects</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Hepatocytes - cytology</subject><subject>Hepatocytes - ultrastructure</subject><subject>Homology</subject><subject>Homology (Biology)</subject><subject>Humans</subject><subject>Integration</subject><subject>Intestine</subject><subject>Intestines - cytology</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Liver - cytology</subject><subject>Liver cells</subject><subject>Non-homologous end joining</subject><subject>Nucleotide sequence</subject><subject>Organoids</subject><subject>Organoids - cytology</subject><subject>Organoids - ultrastructure</subject><subject>p53 Protein</subject><subject>Ploidy</subject><subject>Science & Technology</subject><subject>Spindle (Cell division)</subject><subject>Spindle Apparatus - ultrastructure</subject><subject>Stem Cells</subject><subject>technical-report</subject><subject>Tubulin</subject><subject>Tumor Suppressor Protein p53 - physiology</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkt-K1DAUxoso7jr6AN5IwRtFuuZvk14uxdWBBWVWr0OannSzO03GpkUXb3wH39AnMbXjyoiCBJLD4fd9nBy-LHuM0QlGVL6MDHNeFoigAjFBCn4nO8ZMlAUrRXV3rkteCFqRo-xBjFcIYcaQuJ8dUYIJpZQfZ1_OdBxz7dscrHXGgR_zDjwMenTB58Hm1z6Y68L5_HLqdeoMnfbBtTGfovNdfhn6sA3dTSJa2EG6kkO9WV-823z_-q3Wscp3AxgXZ7vkHHrIoXVj0j7M7lm9jfBo_66yD2ev3tdvivO3r9f16XlhuCRjYXTDS4YFUC0M11IKJBvUlqiVurKoYpWxpCqtFFVJpG5Yo7W2FWWcA6ac0FX2bPHdDeHjBHFUvYsGtlvtIUxRESoQqwhJO11lT_9Ar8I0-DTdTBFZ7g33VKe3oJy3YRy0mU3VaYkl4WXFWKJO_kKl00LvTPBgXeofCJ4fCBIzwuex01OMan2xOWTxwpohxDiAVbvB9Xq4URipORxqCYdK4VBzOBRPmif7z01ND-2t4lcaEvBiAT5BE2yc02DgFkMIcSwEozJVaN6C_H-6duPPRNVh8mOSkkUaE-47GH6v-d_j_wA6LuPM</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Artegiani, Benedetta</creator><creator>Hendriks, Delilah</creator><creator>Beumer, Joep</creator><creator>Kok, Rutger</creator><creator>Zheng, Xuan</creator><creator>Joore, Indi</creator><creator>Chuva de Sousa Lopes, Susana</creator><creator>van Zon, Jeroen</creator><creator>Tans, Sander</creator><creator>Clevers, Hans</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3077-5582</orcidid><orcidid>https://orcid.org/0000-0003-3866-2803</orcidid><orcidid>https://orcid.org/0000-0002-6214-681X</orcidid><orcidid>https://orcid.org/0000-0002-0904-4187</orcidid><orcidid>https://orcid.org/0000-0003-1159-5946</orcidid><orcidid>https://orcid.org/0000-0002-1700-9082</orcidid></search><sort><creationdate>20200301</creationdate><title>Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing</title><author>Artegiani, Benedetta ; Hendriks, Delilah ; Beumer, Joep ; Kok, Rutger ; Zheng, Xuan ; Joore, Indi ; Chuva de Sousa Lopes, Susana ; van Zon, Jeroen ; Tans, Sander ; Clevers, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c582t-cab56417e3a7c5a88708b0d60d8a9f0949cf296f879628ab4baaaf93455e13523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/1</topic><topic>13/106</topic><topic>13/107</topic><topic>13/31</topic><topic>38/109</topic><topic>42/35</topic><topic>42/44</topic><topic>42/70</topic><topic>45/100</topic><topic>45/41</topic><topic>631/1647/1511</topic><topic>631/337/4041/3196</topic><topic>631/532</topic><topic>631/61/2320</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell membranes</topic><topic>Cloning</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>E-cadherin</topic><topic>Editing</topic><topic>Gene Editing</topic><topic>Gene Knock-In Techniques - methods</topic><topic>Gene sequencing</topic><topic>Genetic aspects</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Hepatocytes - cytology</topic><topic>Hepatocytes - ultrastructure</topic><topic>Homology</topic><topic>Homology (Biology)</topic><topic>Humans</topic><topic>Integration</topic><topic>Intestine</topic><topic>Intestines - cytology</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Liver - cytology</topic><topic>Liver cells</topic><topic>Non-homologous end joining</topic><topic>Nucleotide sequence</topic><topic>Organoids</topic><topic>Organoids - cytology</topic><topic>Organoids - ultrastructure</topic><topic>p53 Protein</topic><topic>Ploidy</topic><topic>Science & Technology</topic><topic>Spindle (Cell division)</topic><topic>Spindle Apparatus - ultrastructure</topic><topic>Stem Cells</topic><topic>technical-report</topic><topic>Tubulin</topic><topic>Tumor Suppressor Protein p53 - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artegiani, Benedetta</creatorcontrib><creatorcontrib>Hendriks, Delilah</creatorcontrib><creatorcontrib>Beumer, Joep</creatorcontrib><creatorcontrib>Kok, Rutger</creatorcontrib><creatorcontrib>Zheng, Xuan</creatorcontrib><creatorcontrib>Joore, Indi</creatorcontrib><creatorcontrib>Chuva de Sousa Lopes, Susana</creatorcontrib><creatorcontrib>van Zon, Jeroen</creatorcontrib><creatorcontrib>Tans, Sander</creatorcontrib><creatorcontrib>Clevers, Hans</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artegiani, Benedetta</au><au>Hendriks, Delilah</au><au>Beumer, Joep</au><au>Kok, Rutger</au><au>Zheng, Xuan</au><au>Joore, Indi</au><au>Chuva de Sousa Lopes, Susana</au><au>van Zon, Jeroen</au><au>Tans, Sander</au><au>Clevers, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><stitle>NAT CELL BIOL</stitle><addtitle>Nat Cell Biol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>22</volume><issue>3</issue><spage>321</spage><epage>331</epage><pages>321-331</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>CRISPR–Cas9 technology has revolutionized genome editing and is applicable to the organoid field. However, precise integration of exogenous DNA sequences into human organoids is lacking robust knock-in approaches. Here, we describe CRISPR–Cas9-mediated homology-independent organoid transgenesis (CRISPR–HOT), which enables efficient generation of knock-in human organoids representing different tissues. CRISPR–HOT avoids extensive cloning and outperforms homology directed repair (HDR) in achieving precise integration of exogenous DNA sequences into desired loci, without the necessity to inactivate TP53 in untransformed cells, which was previously used to increase HDR-mediated knock-in. CRISPR–HOT was used to fluorescently tag and visualize subcellular structural molecules and to generate reporter lines for rare intestinal cell types. A double reporter—in which the mitotic spindle was labelled by endogenously tagged tubulin and the cell membrane by endogenously tagged E-cadherin—uncovered modes of human hepatocyte division. Combining tubulin tagging with
TP53
knock-out revealed that TP53 is involved in controlling hepatocyte ploidy and mitotic spindle fidelity. CRISPR–HOT simplifies genome editing in human organoids.
Artegiani, Hendriks et al. describe a CRISPR–Cas9-based method to efficiently generate human knock-in organoids using non-homologous end joining to study rare intestinal cell types and human hepatocyte division.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32123335</pmid><doi>10.1038/s41556-020-0472-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3077-5582</orcidid><orcidid>https://orcid.org/0000-0003-3866-2803</orcidid><orcidid>https://orcid.org/0000-0002-6214-681X</orcidid><orcidid>https://orcid.org/0000-0002-0904-4187</orcidid><orcidid>https://orcid.org/0000-0003-1159-5946</orcidid><orcidid>https://orcid.org/0000-0002-1700-9082</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-7392 |
ispartof | Nature cell biology, 2020-03, Vol.22 (3), p.321-331 |
issn | 1465-7392 1476-4679 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A618256944 |
source | MEDLINE; Nature; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection |
subjects | 13/1 13/106 13/107 13/31 38/109 42/35 42/44 42/70 45/100 45/41 631/1647/1511 631/337/4041/3196 631/532 631/61/2320 Biomedical and Life Sciences Cancer Research Cell Biology Cell membranes Cloning CRISPR CRISPR-Cas Systems Deoxyribonucleic acid Developmental Biology DNA E-cadherin Editing Gene Editing Gene Knock-In Techniques - methods Gene sequencing Genetic aspects Genome editing Genomes Genomics Health aspects Hepatocytes - cytology Hepatocytes - ultrastructure Homology Homology (Biology) Humans Integration Intestine Intestines - cytology Life Sciences Life Sciences & Biomedicine Liver - cytology Liver cells Non-homologous end joining Nucleotide sequence Organoids Organoids - cytology Organoids - ultrastructure p53 Protein Ploidy Science & Technology Spindle (Cell division) Spindle Apparatus - ultrastructure Stem Cells technical-report Tubulin Tumor Suppressor Protein p53 - physiology |
title | Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T04%3A58%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20efficient%20generation%20of%20knock-in%20human%20organoids%20using%20homology-independent%20CRISPR%E2%80%93Cas9%20precision%20genome%20editing&rft.jtitle=Nature%20cell%20biology&rft.au=Artegiani,%20Benedetta&rft.date=2020-03-01&rft.volume=22&rft.issue=3&rft.spage=321&rft.epage=331&rft.pages=321-331&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-020-0472-5&rft_dat=%3Cgale_cross%3EA618256944%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372861352&rft_id=info:pmid/32123335&rft_galeid=A618256944&rfr_iscdi=true |