Absence of reproduction-immunity trade-off in male Drosophila melanogaster evolving under differential sexual selection
Background The theory of trade-off suggests that limited resources should lead to trade-off in resource intensive traits such as, immunity related and sexually selected traits in males. Alternatively, sexual exaggerations can also act as an honest indicator of underlying immunocompetence, leading to...
Gespeichert in:
Veröffentlicht in: | BMC ecology and evolution 2020-01, Vol.20 (1), p.13-13, Article 13 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background The theory of trade-off suggests that limited resources should lead to trade-off in resource intensive traits such as, immunity related and sexually selected traits in males. Alternatively, sexual exaggerations can also act as an honest indicator of underlying immunocompetence, leading to positive correlations between these traits. Evidences in support of either hypothesis in invertebrates are equivocal. Whereas several studies have addressed this question, few have used naturally occurring pathogens and realized post infection realized immunity (e.g., survivorship) to assay the fitness correlations between these two sets of traits. Results Adopting an experimental evolution approach, we evolved replicate populations of Drosophila melanogaster under high and low sexual selection regimes for over a hundred generations and found the following in virgin and mated males in three separate assays:
Post infection survivorship against two natural pathogens - (Pe) and (Ss): Mated males survived better against Pe, but were no different than virgins against Ss. Pseudomonas entomophilaStaphylococcus succinusBacterial clearance ability against a third natural pathogen (Pr): Mated males had significantly lower CFUs than virgins. However, sexual selection history had no effect on realized immunity of either virgin or mated males. Conclusion We show that while mating can affect realized immunity in a pathogen specific way, sexual selection did not affect the same. The results highlight that complex polygenic traits such as immunity and reproductive traits not necessarily evolve following a binary trade-off model. We also stress the importance natural pathogens while studying sexual selection-immunity correlations. |
---|---|
ISSN: | 1471-2148 1471-2148 2730-7182 |
DOI: | 10.1186/s12862-019-1574-1 |