OpenMendel: a cooperative programming project for statistical genetics

Statistical methods for genome-wide association studies (GWAS) continue to improve. However, the increasing volume and variety of genetic and genomic data make computational speed and ease of data manipulation mandatory in future software. In our view, a collaborative effort of statistical geneticis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human genetics 2020-01, Vol.139 (1), p.61-71
Hauptverfasser: Zhou, Hua, Sinsheimer, Janet S., Bates, Douglas M., Chu, Benjamin B., German, Christopher A., Ji, Sarah S., Keys, Kevin L., Kim, Juhyun, Ko, Seyoon, Mosher, Gordon D., Papp, Jeanette C., Sobel, Eric M., Zhai, Jing, Zhou, Jin J., Lange, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Statistical methods for genome-wide association studies (GWAS) continue to improve. However, the increasing volume and variety of genetic and genomic data make computational speed and ease of data manipulation mandatory in future software. In our view, a collaborative effort of statistical geneticists is required to develop open source software targeted to genetic epidemiology. Our attempt to meet this need is called the OpenMendel project ( https://openmendel.github.io ). It aims to (1) enable interactive and reproducible analyses with informative intermediate results, (2) scale to big data analytics, (3) embrace parallel and distributed computing, (4) adapt to rapid hardware evolution, (5) allow cloud computing, (6) allow integration of varied genetic data types, and (7) foster easy communication between clinicians, geneticists, statisticians, and computer scientists. This article reviews and makes recommendations to the genetic epidemiology community in the context of the OpenMendel project.
ISSN:0340-6717
1432-1203
DOI:10.1007/s00439-019-02001-z