Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step
Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2019-01, Vol.135 (2), p.1417 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 1417 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 135 |
creator | Mehrez, Zouhaier El Cafsi, Afif |
description | Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers. |
doi_str_mv | 10.1007/s10973-018-7541-z |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A574895171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A574895171</galeid><sourcerecordid>A574895171</sourcerecordid><originalsourceid>FETCH-LOGICAL-g731-84adc0c026e9cb57ef4832c889cf2624919ccd860bd376361eaf40a92cbc422f3</originalsourceid><addsrcrecordid>eNpVj81OwzAQhC0EEqXwANxy5eDUP0lsH6uKQqVKlaD3ylnbaSC1qzhtKU-PBRxAe5hPuzMjLUL3lOSUEDGJlCjBMaESi7Kg-PMCjWgpJWaKVZeJeeKKluQa3cT4RghRitAR2s9DD9ZkEPzRwtAGn-104-0QtmfTB3P2etdCNu3yeKhztvoWjmeHyUkPts-257pvTea1D647JHJdOGXhmE46qzW8n3RvsNPQ-iaLg93foiunu2jvfnWM1vPH9ewZL1dPi9l0iRvBKZaFNkCAsMoqqEthXSE5AykVOFaxQlEFYGRFasNFxStqtSuIVgxqKBhzfIzyn9pGd3bTeheGXkMaY9M_wVvXpv20FIVUJRU0BR7-BZJnsB9Dow8xbhavL3-9X2RcbtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step</title><source>Springer journals</source><creator>Mehrez, Zouhaier ; El Cafsi, Afif</creator><creatorcontrib>Mehrez, Zouhaier ; El Cafsi, Afif</creatorcontrib><description>Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-018-7541-z</identifier><language>eng</language><publisher>Springer</publisher><subject>Magnetic fields</subject><ispartof>Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (2), p.1417</ispartof><rights>COPYRIGHT 2019 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mehrez, Zouhaier</creatorcontrib><creatorcontrib>El Cafsi, Afif</creatorcontrib><title>Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step</title><title>Journal of thermal analysis and calorimetry</title><description>Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers.</description><subject>Magnetic fields</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVj81OwzAQhC0EEqXwANxy5eDUP0lsH6uKQqVKlaD3ylnbaSC1qzhtKU-PBRxAe5hPuzMjLUL3lOSUEDGJlCjBMaESi7Kg-PMCjWgpJWaKVZeJeeKKluQa3cT4RghRitAR2s9DD9ZkEPzRwtAGn-104-0QtmfTB3P2etdCNu3yeKhztvoWjmeHyUkPts-257pvTea1D647JHJdOGXhmE46qzW8n3RvsNPQ-iaLg93foiunu2jvfnWM1vPH9ewZL1dPi9l0iRvBKZaFNkCAsMoqqEthXSE5AykVOFaxQlEFYGRFasNFxStqtSuIVgxqKBhzfIzyn9pGd3bTeheGXkMaY9M_wVvXpv20FIVUJRU0BR7-BZJnsB9Dow8xbhavL3-9X2RcbtQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mehrez, Zouhaier</creator><creator>El Cafsi, Afif</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20190101</creationdate><title>Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step</title><author>Mehrez, Zouhaier ; El Cafsi, Afif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g731-84adc0c026e9cb57ef4832c889cf2624919ccd860bd376361eaf40a92cbc422f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrez, Zouhaier</creatorcontrib><creatorcontrib>El Cafsi, Afif</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrez, Zouhaier</au><au>El Cafsi, Afif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>135</volume><issue>2</issue><spage>1417</spage><pages>1417-</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers.</abstract><pub>Springer</pub><doi>10.1007/s10973-018-7541-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (2), p.1417 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A574895171 |
source | Springer journals |
subjects | Magnetic fields |
title | Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20convection%20magnetohydrodynamic%20Al.sub.2O.sub.3-Cu/water%20hybrid%20nanofluid%20flow%20over%20a%20backward-facing%20step&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Mehrez,%20Zouhaier&rft.date=2019-01-01&rft.volume=135&rft.issue=2&rft.spage=1417&rft.pages=1417-&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-018-7541-z&rft_dat=%3Cgale%3EA574895171%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A574895171&rfr_iscdi=true |