Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step

Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2019-01, Vol.135 (2), p.1417
Hauptverfasser: Mehrez, Zouhaier, El Cafsi, Afif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 1417
container_title Journal of thermal analysis and calorimetry
container_volume 135
creator Mehrez, Zouhaier
El Cafsi, Afif
description Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers.
doi_str_mv 10.1007/s10973-018-7541-z
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A574895171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A574895171</galeid><sourcerecordid>A574895171</sourcerecordid><originalsourceid>FETCH-LOGICAL-g731-84adc0c026e9cb57ef4832c889cf2624919ccd860bd376361eaf40a92cbc422f3</originalsourceid><addsrcrecordid>eNpVj81OwzAQhC0EEqXwANxy5eDUP0lsH6uKQqVKlaD3ylnbaSC1qzhtKU-PBRxAe5hPuzMjLUL3lOSUEDGJlCjBMaESi7Kg-PMCjWgpJWaKVZeJeeKKluQa3cT4RghRitAR2s9DD9ZkEPzRwtAGn-104-0QtmfTB3P2etdCNu3yeKhztvoWjmeHyUkPts-257pvTea1D647JHJdOGXhmE46qzW8n3RvsNPQ-iaLg93foiunu2jvfnWM1vPH9ewZL1dPi9l0iRvBKZaFNkCAsMoqqEthXSE5AykVOFaxQlEFYGRFasNFxStqtSuIVgxqKBhzfIzyn9pGd3bTeheGXkMaY9M_wVvXpv20FIVUJRU0BR7-BZJnsB9Dow8xbhavL3-9X2RcbtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step</title><source>Springer journals</source><creator>Mehrez, Zouhaier ; El Cafsi, Afif</creator><creatorcontrib>Mehrez, Zouhaier ; El Cafsi, Afif</creatorcontrib><description>Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-018-7541-z</identifier><language>eng</language><publisher>Springer</publisher><subject>Magnetic fields</subject><ispartof>Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (2), p.1417</ispartof><rights>COPYRIGHT 2019 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mehrez, Zouhaier</creatorcontrib><creatorcontrib>El Cafsi, Afif</creatorcontrib><title>Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step</title><title>Journal of thermal analysis and calorimetry</title><description>Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers.</description><subject>Magnetic fields</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVj81OwzAQhC0EEqXwANxy5eDUP0lsH6uKQqVKlaD3ylnbaSC1qzhtKU-PBRxAe5hPuzMjLUL3lOSUEDGJlCjBMaESi7Kg-PMCjWgpJWaKVZeJeeKKluQa3cT4RghRitAR2s9DD9ZkEPzRwtAGn-104-0QtmfTB3P2etdCNu3yeKhztvoWjmeHyUkPts-257pvTea1D647JHJdOGXhmE46qzW8n3RvsNPQ-iaLg93foiunu2jvfnWM1vPH9ewZL1dPi9l0iRvBKZaFNkCAsMoqqEthXSE5AykVOFaxQlEFYGRFasNFxStqtSuIVgxqKBhzfIzyn9pGd3bTeheGXkMaY9M_wVvXpv20FIVUJRU0BR7-BZJnsB9Dow8xbhavL3-9X2RcbtQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Mehrez, Zouhaier</creator><creator>El Cafsi, Afif</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20190101</creationdate><title>Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step</title><author>Mehrez, Zouhaier ; El Cafsi, Afif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g731-84adc0c026e9cb57ef4832c889cf2624919ccd860bd376361eaf40a92cbc422f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrez, Zouhaier</creatorcontrib><creatorcontrib>El Cafsi, Afif</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrez, Zouhaier</au><au>El Cafsi, Afif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>135</volume><issue>2</issue><spage>1417</spage><pages>1417-</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Forced convection hybrid nanofluid flow over a backward-facing step under a non-uniform magnetic field is numerically studied using a finite volume method. The external magnetic source is placed in the step edge. The study is performed for a range of nanoparticles volume fraction, [phi], from 0 to 2%, Hartmann number, Ha, from 0 to 50, and Reynolds number, Re, from 100 to 300. Results show that the reattachment length reduces by increasing volume fraction of nanoparticles and by decreasing Reynolds number. The recirculation bubble weakens and the conductive heat transfer mode growth by increasing Hartmann number at weak magnetic field intensity. It totally disappears at high Hartmann number when the convective mode dominates. The average Nusselt number increases by increasing volume fraction of nanoparticles and varies with the Hartmann number. The effects of Lorentz force and hybrid nanoparticles on the heat transfer enhancement rates are strongly linked with volume fraction of nanoparticles and Hartmann and Reynolds numbers.</abstract><pub>Springer</pub><doi>10.1007/s10973-018-7541-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2019-01, Vol.135 (2), p.1417
issn 1388-6150
1588-2926
language eng
recordid cdi_gale_infotracacademiconefile_A574895171
source Springer journals
subjects Magnetic fields
title Forced convection magnetohydrodynamic Al.sub.2O.sub.3-Cu/water hybrid nanofluid flow over a backward-facing step
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20convection%20magnetohydrodynamic%20Al.sub.2O.sub.3-Cu/water%20hybrid%20nanofluid%20flow%20over%20a%20backward-facing%20step&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Mehrez,%20Zouhaier&rft.date=2019-01-01&rft.volume=135&rft.issue=2&rft.spage=1417&rft.pages=1417-&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-018-7541-z&rft_dat=%3Cgale%3EA574895171%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A574895171&rfr_iscdi=true