as a symmetry of division algebraic ladder operators
We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras [Formula omitted], [Formula omitted], [Formula omitted], and [Formula omitted]. From the...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2018-05, Vol.78 (5) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | The European physical journal. C, Particles and fields |
container_volume | 78 |
creator | Furey, C |
description | We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras [Formula omitted], [Formula omitted], [Formula omitted], and [Formula omitted]. From the SU(n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with [Formula omitted]. Finally, we point out that if U(n) ladder symmetries are used in place of SU(n), it may then be possible to find this same [Formula omitted], together with an extra [Formula omitted] symmetry, related to [Formula omitted]. |
doi_str_mv | 10.1140/epjc/s10052-018-5844-7 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A538440502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A538440502</galeid><sourcerecordid>A538440502</sourcerecordid><originalsourceid>FETCH-LOGICAL-g732-87f2874bf497e53c86a74bb87a18e5c7c377df4982f937e426073d1c6f3981243</originalsourceid><addsrcrecordid>eNpVT11LAzEQDKJgrf4FyasPafOxd8k9lqK2UBC07yWX2xwpd5dyOcX-ewOKKPswO7MzC0PIveALIYAv8XR0yyQ4LyTjwrDCADB9QWYCFLAyy5e_O8A1uUnpyDmXwM2MgE3U0nTue5zGM42eNuEjpBAHarsW69EGRzvbNDjSeMLRTnFMt-TK2y7h3Q_Oyf7pcb_esN3L83a92rFWK8mM9tJoqD1UGgvlTGkzq422wmDhtFNaN_lopK-URpAl16oRrvSqMkKCmpPF99vWdngIg4_TaF2eBvvg4oA-ZH1VqFyYF1zmwMO_QPZM-Dm19j2lw_bt9a_3C-lTWWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>as a symmetry of division algebraic ladder operators</title><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Furey, C</creator><creatorcontrib>Furey, C</creatorcontrib><description>We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras [Formula omitted], [Formula omitted], [Formula omitted], and [Formula omitted]. From the SU(n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with [Formula omitted]. Finally, we point out that if U(n) ladder symmetries are used in place of SU(n), it may then be possible to find this same [Formula omitted], together with an extra [Formula omitted] symmetry, related to [Formula omitted].</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-018-5844-7</identifier><language>eng</language><publisher>Springer</publisher><subject>Algebra ; Analysis</subject><ispartof>The European physical journal. C, Particles and fields, 2018-05, Vol.78 (5)</ispartof><rights>COPYRIGHT 2018 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Furey, C</creatorcontrib><title>as a symmetry of division algebraic ladder operators</title><title>The European physical journal. C, Particles and fields</title><description>We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras [Formula omitted], [Formula omitted], [Formula omitted], and [Formula omitted]. From the SU(n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with [Formula omitted]. Finally, we point out that if U(n) ladder symmetries are used in place of SU(n), it may then be possible to find this same [Formula omitted], together with an extra [Formula omitted] symmetry, related to [Formula omitted].</description><subject>Algebra</subject><subject>Analysis</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVT11LAzEQDKJgrf4FyasPafOxd8k9lqK2UBC07yWX2xwpd5dyOcX-ewOKKPswO7MzC0PIveALIYAv8XR0yyQ4LyTjwrDCADB9QWYCFLAyy5e_O8A1uUnpyDmXwM2MgE3U0nTue5zGM42eNuEjpBAHarsW69EGRzvbNDjSeMLRTnFMt-TK2y7h3Q_Oyf7pcb_esN3L83a92rFWK8mM9tJoqD1UGgvlTGkzq422wmDhtFNaN_lopK-URpAl16oRrvSqMkKCmpPF99vWdngIg4_TaF2eBvvg4oA-ZH1VqFyYF1zmwMO_QPZM-Dm19j2lw_bt9a_3C-lTWWg</recordid><startdate>20180512</startdate><enddate>20180512</enddate><creator>Furey, C</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20180512</creationdate><title>as a symmetry of division algebraic ladder operators</title><author>Furey, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g732-87f2874bf497e53c86a74bb87a18e5c7c377df4982f937e426073d1c6f3981243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furey, C</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furey, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>as a symmetry of division algebraic ladder operators</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><date>2018-05-12</date><risdate>2018</risdate><volume>78</volume><issue>5</issue><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>We demonstrate a model which captures certain attractive features of SU(5) theory, while providing a possible escape from proton decay. In this paper we show how ladder operators arise from the division algebras [Formula omitted], [Formula omitted], [Formula omitted], and [Formula omitted]. From the SU(n) symmetry of these ladder operators, we then demonstrate a model which has much structural similarity to Georgi and Glashow's SU(5) grand unified theory. However, in this case, the transitions leading to proton decay are expected to be blocked, given that they coincide with presumably forbidden transformations which would incorrectly mix distinct algebraic actions. As a result, we find that we are left with [Formula omitted]. Finally, we point out that if U(n) ladder symmetries are used in place of SU(n), it may then be possible to find this same [Formula omitted], together with an extra [Formula omitted] symmetry, related to [Formula omitted].</abstract><pub>Springer</pub><doi>10.1140/epjc/s10052-018-5844-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2018-05, Vol.78 (5) |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A538440502 |
source | Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals |
subjects | Algebra Analysis |
title | as a symmetry of division algebraic ladder operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=as%20a%20symmetry%20of%20division%20algebraic%20ladder%20operators&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Furey,%20C&rft.date=2018-05-12&rft.volume=78&rft.issue=5&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-018-5844-7&rft_dat=%3Cgale%3EA538440502%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A538440502&rfr_iscdi=true |