Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application

Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SAE International journal of alternative powertrains 2017-07, Vol.6 (2), p.246-251, Article 2017-01-1201
Hauptverfasser: Zhang, Zhenli, Jin, Zhihong, Wyatt, Perry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 2
container_start_page 246
container_title SAE International journal of alternative powertrains
container_volume 6
creator Zhang, Zhenli
Jin, Zhihong
Wyatt, Perry
description Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications. By simulation a quantitative analysis of influencing factors on plating and a quantitative map of current limits to prevent lithium plating are provided. Our simulation suggests that a method that combines modeling and three electrode tests could be used to determine the true current limit map to prevent plating. Modeling are also performed to investigate the effects of coating thickness and driving cycles to illustrate the impact of design variables and applications.
doi_str_mv 10.4271/2017-01-1201
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A531111125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A531111125</galeid><jstor_id>26169167</jstor_id><sourcerecordid>A531111125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-a8ea639dd01be8ae8856578636fe1e66c1da0c5a9e8d27805dcb6d2e494bb3f23</originalsourceid><addsrcrecordid>eNpdUT1PwzAQtRBIVNCNFck_gBSf0zjJWKpCKxXBAANT5PijdeXGle0O_fc4BBh6N9zT6d2T3juE7oBMprSER0qgzAhkkMAFGlFgZTalpLj8w1DDNRqHsCOpSkJrRkboa2GViN6JrdobwS1-dVJZ022w03ht4tYc9_jd8ni2WrkOP_EYlT9h7TxenlpvJJ4dDjbJROO6W3SluQ1q_Dtv0Ofz4mO-zNZvL6v5bJ2JnLGY8UpxltdSEmhVxVVVFawoK5YzrUAxJkByIgpeq0rSsiKFFC2TVE3radvmmuY3aDLobrhVjem0i56L1LJ35DqlTdrPihz6okU6eBgOhHcheKWbgzd77k8NkKaPsumjbAg0fZSJng30wHv55Lj78cftzh0TtuGcfz_wdyE6_69NGbA6_SH_BrgtfyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application</title><source>Jstor Complete Legacy</source><creator>Zhang, Zhenli ; Jin, Zhihong ; Wyatt, Perry</creator><creatorcontrib>Zhang, Zhenli ; Jin, Zhihong ; Wyatt, Perry</creatorcontrib><description>Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications. By simulation a quantitative analysis of influencing factors on plating and a quantitative map of current limits to prevent lithium plating are provided. Our simulation suggests that a method that combines modeling and three electrode tests could be used to determine the true current limit map to prevent plating. Modeling are also performed to investigate the effects of coating thickness and driving cycles to illustrate the impact of design variables and applications.</description><identifier>ISSN: 2167-4191</identifier><identifier>ISSN: 2167-4205</identifier><identifier>EISSN: 2167-4205</identifier><identifier>DOI: 10.4271/2017-01-1201</identifier><language>eng</language><publisher>SAE International</publisher><subject>Design and construction ; Electrochemistry ; Lithium batteries ; Methods ; Plating</subject><ispartof>SAE International journal of alternative powertrains, 2017-07, Vol.6 (2), p.246-251, Article 2017-01-1201</ispartof><rights>Copyright © 2017 SAE International</rights><rights>COPYRIGHT 2017 SAE International</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-a8ea639dd01be8ae8856578636fe1e66c1da0c5a9e8d27805dcb6d2e494bb3f23</citedby><cites>FETCH-LOGICAL-c366t-a8ea639dd01be8ae8856578636fe1e66c1da0c5a9e8d27805dcb6d2e494bb3f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26169167$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26169167$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,57992,58225</link.rule.ids></links><search><creatorcontrib>Zhang, Zhenli</creatorcontrib><creatorcontrib>Jin, Zhihong</creatorcontrib><creatorcontrib>Wyatt, Perry</creatorcontrib><title>Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application</title><title>SAE International journal of alternative powertrains</title><description>Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications. By simulation a quantitative analysis of influencing factors on plating and a quantitative map of current limits to prevent lithium plating are provided. Our simulation suggests that a method that combines modeling and three electrode tests could be used to determine the true current limit map to prevent plating. Modeling are also performed to investigate the effects of coating thickness and driving cycles to illustrate the impact of design variables and applications.</description><subject>Design and construction</subject><subject>Electrochemistry</subject><subject>Lithium batteries</subject><subject>Methods</subject><subject>Plating</subject><issn>2167-4191</issn><issn>2167-4205</issn><issn>2167-4205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdUT1PwzAQtRBIVNCNFck_gBSf0zjJWKpCKxXBAANT5PijdeXGle0O_fc4BBh6N9zT6d2T3juE7oBMprSER0qgzAhkkMAFGlFgZTalpLj8w1DDNRqHsCOpSkJrRkboa2GViN6JrdobwS1-dVJZ022w03ht4tYc9_jd8ni2WrkOP_EYlT9h7TxenlpvJJ4dDjbJROO6W3SluQ1q_Dtv0Ofz4mO-zNZvL6v5bJ2JnLGY8UpxltdSEmhVxVVVFawoK5YzrUAxJkByIgpeq0rSsiKFFC2TVE3radvmmuY3aDLobrhVjem0i56L1LJ35DqlTdrPihz6okU6eBgOhHcheKWbgzd77k8NkKaPsumjbAg0fZSJng30wHv55Lj78cftzh0TtuGcfz_wdyE6_69NGbA6_SH_BrgtfyU</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Zhang, Zhenli</creator><creator>Jin, Zhihong</creator><creator>Wyatt, Perry</creator><general>SAE International</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170701</creationdate><title>Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application</title><author>Zhang, Zhenli ; Jin, Zhihong ; Wyatt, Perry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-a8ea639dd01be8ae8856578636fe1e66c1da0c5a9e8d27805dcb6d2e494bb3f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Design and construction</topic><topic>Electrochemistry</topic><topic>Lithium batteries</topic><topic>Methods</topic><topic>Plating</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhenli</creatorcontrib><creatorcontrib>Jin, Zhihong</creatorcontrib><creatorcontrib>Wyatt, Perry</creatorcontrib><collection>CrossRef</collection><jtitle>SAE International journal of alternative powertrains</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhenli</au><au>Jin, Zhihong</au><au>Wyatt, Perry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application</atitle><jtitle>SAE International journal of alternative powertrains</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>6</volume><issue>2</issue><spage>246</spage><epage>251</epage><pages>246-251</pages><artnum>2017-01-1201</artnum><issn>2167-4191</issn><issn>2167-4205</issn><eissn>2167-4205</eissn><abstract>Lithium plating is an important failure factor for lithium ion battery with carbon-based anodes and therefore preventing lithium plating has been a critical consideration in designs of lithium ion battery and battery management system. The challenges are: How to determine the charging current limits which may vary with temperature, state of charge, state of health, and battery operations? Where are the optimization rooms in battery design and management system without raising plating risks? Due to the complex nature of lithium plating dynamics it is hard to detect and measure the plating by any of experimental means. In this work we developed an electrochemical model that explicitly includes lithium plating reaction. It enables both determination of plating onset and quantification of plated lithium. We have studied the effects of charging pulses on homogenous plating in order to provide guidance for lithium ion battery design in hybrid applications. By simulation a quantitative analysis of influencing factors on plating and a quantitative map of current limits to prevent lithium plating are provided. Our simulation suggests that a method that combines modeling and three electrode tests could be used to determine the true current limit map to prevent plating. Modeling are also performed to investigate the effects of coating thickness and driving cycles to illustrate the impact of design variables and applications.</abstract><pub>SAE International</pub><doi>10.4271/2017-01-1201</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2167-4191
ispartof SAE International journal of alternative powertrains, 2017-07, Vol.6 (2), p.246-251, Article 2017-01-1201
issn 2167-4191
2167-4205
2167-4205
language eng
recordid cdi_gale_infotracacademiconefile_A531111125
source Jstor Complete Legacy
subjects Design and construction
Electrochemistry
Lithium batteries
Methods
Plating
title Electrochemical Modeling of Lithium Plating of Lithium Ion Battery for Hybrid Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Modeling%20of%20Lithium%20Plating%20of%20Lithium%20Ion%20Battery%20for%20Hybrid%20Application&rft.jtitle=SAE%20International%20journal%20of%20alternative%20powertrains&rft.au=Zhang,%20Zhenli&rft.date=2017-07-01&rft.volume=6&rft.issue=2&rft.spage=246&rft.epage=251&rft.pages=246-251&rft.artnum=2017-01-1201&rft.issn=2167-4191&rft.eissn=2167-4205&rft_id=info:doi/10.4271/2017-01-1201&rft_dat=%3Cgale_cross%3EA531111125%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A531111125&rft_jstor_id=26169167&rfr_iscdi=true