Dimensionality of big data sets explored by Cluj descriptors
Dimensionality of a relatively big data set (95 compounds) observed for toxicity (mutagenicity) was explored in order to compute QSAR models. Distinct molecular descriptors were used. Dimensionality of data, using PCA, correlation plots and clustering, was evaluated. Analyzing data dimensionality al...
Gespeichert in:
Veröffentlicht in: | Studia Universitatis Babeș-Bolyai. Chemia 2017-01, Vol.62 (3), p.197-204 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | 3 |
container_start_page | 197 |
container_title | Studia Universitatis Babeș-Bolyai. Chemia |
container_volume | 62 |
creator | Lungu, Claudiu Ersali, Sara Szefler, Beata Pîrvan-Moldovan, Atena Basak, Subhash Diudea, Mircea V. |
description | Dimensionality of a relatively big data set (95 compounds) observed for toxicity (mutagenicity) was explored in order to compute QSAR models. Distinct molecular descriptors were used. Dimensionality of data, using PCA, correlation plots and clustering, was evaluated. Analyzing data dimensionality allowed model optimization. Docking studies and PCA were used in order to expand data dimensionality. Pearson correlation coefficient ([r.sup.2]) values, obtained for both perceptive and predictive models, were satisfactory. Keywords: topological descriptor, QSAR, data dimensionality, mutagenity, principal component analysis (PCA), Ames test. |
doi_str_mv | 10.24193/subbchem.2017.3.16 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A524380370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A524380370</galeid><sourcerecordid>A524380370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-f223b7b497f840f609f9811451f302d3b41cc82207485a8eab23eafc59feac1f3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhIMoWGp_gZf8gV3fvEn2A7yU-gkFL3oOSTapKbubkmzB_ntXq8xhYJiZw0PILYMSBWv5XT4aYz_dUCKwuuQlqy7IAqGSRSsRLsmCIYqiZlJck1XOewBgDKWoYEHuH8LgxhziqPswnWj01IQd7fSkaXZTpu7r0MfkOmpOdNMf97Rz2aZwmGLKN-TK6z671Z8vycfT4_vmpdi-Pb9u1tvCcs6nwiNyUxvR1r4R4CtofdswJiTzHLDjRjBrG0SoRSN147RB7rS3svVO27m0JOX5d6d7p8Lo45S0ndW5Idg4Oh_mfC1R8AZ4DfOAnwc2xZyT8-qQwqDTSTFQv9DUPzT1A01xxSr-DXidYZI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dimensionality of big data sets explored by Cluj descriptors</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lungu, Claudiu ; Ersali, Sara ; Szefler, Beata ; Pîrvan-Moldovan, Atena ; Basak, Subhash ; Diudea, Mircea V.</creator><creatorcontrib>Lungu, Claudiu ; Ersali, Sara ; Szefler, Beata ; Pîrvan-Moldovan, Atena ; Basak, Subhash ; Diudea, Mircea V. ; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania ; University of Minnesota Duluth Natural Resources Research Institute and Department of Chemistry and Biochemistry, 5013 Miller Trunk Highway, Duluth, MN 55811, USA ; Nicolaus Copernicus University, Faculty of Pharmacy, Department of Physical Chemistry, Collegium Medicum, 85-096 Bydgoszcz, Poland ; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania, diudea@chem.ubbcluj.ro</creatorcontrib><description>Dimensionality of a relatively big data set (95 compounds) observed for toxicity (mutagenicity) was explored in order to compute QSAR models. Distinct molecular descriptors were used. Dimensionality of data, using PCA, correlation plots and clustering, was evaluated. Analyzing data dimensionality allowed model optimization. Docking studies and PCA were used in order to expand data dimensionality. Pearson correlation coefficient ([r.sup.2]) values, obtained for both perceptive and predictive models, were satisfactory. Keywords: topological descriptor, QSAR, data dimensionality, mutagenity, principal component analysis (PCA), Ames test.</description><identifier>ISSN: 1224-7154</identifier><identifier>EISSN: 2065-9520</identifier><identifier>DOI: 10.24193/subbchem.2017.3.16</identifier><language>eng</language><publisher>Universitatea Babes-Bolyai. Chemia</publisher><ispartof>Studia Universitatis Babeș-Bolyai. Chemia, 2017-01, Vol.62 (3), p.197-204</ispartof><rights>COPYRIGHT 2017 Universitatea Babes-Bolyai. Chemia</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-f223b7b497f840f609f9811451f302d3b41cc82207485a8eab23eafc59feac1f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Lungu, Claudiu</creatorcontrib><creatorcontrib>Ersali, Sara</creatorcontrib><creatorcontrib>Szefler, Beata</creatorcontrib><creatorcontrib>Pîrvan-Moldovan, Atena</creatorcontrib><creatorcontrib>Basak, Subhash</creatorcontrib><creatorcontrib>Diudea, Mircea V.</creatorcontrib><creatorcontrib>Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania</creatorcontrib><creatorcontrib>University of Minnesota Duluth Natural Resources Research Institute and Department of Chemistry and Biochemistry, 5013 Miller Trunk Highway, Duluth, MN 55811, USA</creatorcontrib><creatorcontrib>Nicolaus Copernicus University, Faculty of Pharmacy, Department of Physical Chemistry, Collegium Medicum, 85-096 Bydgoszcz, Poland</creatorcontrib><creatorcontrib>Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania, diudea@chem.ubbcluj.ro</creatorcontrib><title>Dimensionality of big data sets explored by Cluj descriptors</title><title>Studia Universitatis Babeș-Bolyai. Chemia</title><description>Dimensionality of a relatively big data set (95 compounds) observed for toxicity (mutagenicity) was explored in order to compute QSAR models. Distinct molecular descriptors were used. Dimensionality of data, using PCA, correlation plots and clustering, was evaluated. Analyzing data dimensionality allowed model optimization. Docking studies and PCA were used in order to expand data dimensionality. Pearson correlation coefficient ([r.sup.2]) values, obtained for both perceptive and predictive models, were satisfactory. Keywords: topological descriptor, QSAR, data dimensionality, mutagenity, principal component analysis (PCA), Ames test.</description><issn>1224-7154</issn><issn>2065-9520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEYhIMoWGp_gZf8gV3fvEn2A7yU-gkFL3oOSTapKbubkmzB_ntXq8xhYJiZw0PILYMSBWv5XT4aYz_dUCKwuuQlqy7IAqGSRSsRLsmCIYqiZlJck1XOewBgDKWoYEHuH8LgxhziqPswnWj01IQd7fSkaXZTpu7r0MfkOmpOdNMf97Rz2aZwmGLKN-TK6z671Z8vycfT4_vmpdi-Pb9u1tvCcs6nwiNyUxvR1r4R4CtofdswJiTzHLDjRjBrG0SoRSN147RB7rS3svVO27m0JOX5d6d7p8Lo45S0ndW5Idg4Oh_mfC1R8AZ4DfOAnwc2xZyT8-qQwqDTSTFQv9DUPzT1A01xxSr-DXidYZI</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Lungu, Claudiu</creator><creator>Ersali, Sara</creator><creator>Szefler, Beata</creator><creator>Pîrvan-Moldovan, Atena</creator><creator>Basak, Subhash</creator><creator>Diudea, Mircea V.</creator><general>Universitatea Babes-Bolyai. Chemia</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>Dimensionality of big data sets explored by Cluj descriptors</title><author>Lungu, Claudiu ; Ersali, Sara ; Szefler, Beata ; Pîrvan-Moldovan, Atena ; Basak, Subhash ; Diudea, Mircea V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-f223b7b497f840f609f9811451f302d3b41cc82207485a8eab23eafc59feac1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lungu, Claudiu</creatorcontrib><creatorcontrib>Ersali, Sara</creatorcontrib><creatorcontrib>Szefler, Beata</creatorcontrib><creatorcontrib>Pîrvan-Moldovan, Atena</creatorcontrib><creatorcontrib>Basak, Subhash</creatorcontrib><creatorcontrib>Diudea, Mircea V.</creatorcontrib><creatorcontrib>Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania</creatorcontrib><creatorcontrib>University of Minnesota Duluth Natural Resources Research Institute and Department of Chemistry and Biochemistry, 5013 Miller Trunk Highway, Duluth, MN 55811, USA</creatorcontrib><creatorcontrib>Nicolaus Copernicus University, Faculty of Pharmacy, Department of Physical Chemistry, Collegium Medicum, 85-096 Bydgoszcz, Poland</creatorcontrib><creatorcontrib>Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania, diudea@chem.ubbcluj.ro</creatorcontrib><collection>CrossRef</collection><jtitle>Studia Universitatis Babeș-Bolyai. Chemia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lungu, Claudiu</au><au>Ersali, Sara</au><au>Szefler, Beata</au><au>Pîrvan-Moldovan, Atena</au><au>Basak, Subhash</au><au>Diudea, Mircea V.</au><aucorp>Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania</aucorp><aucorp>University of Minnesota Duluth Natural Resources Research Institute and Department of Chemistry and Biochemistry, 5013 Miller Trunk Highway, Duluth, MN 55811, USA</aucorp><aucorp>Nicolaus Copernicus University, Faculty of Pharmacy, Department of Physical Chemistry, Collegium Medicum, 85-096 Bydgoszcz, Poland</aucorp><aucorp>Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 400028 Cluj-Napoca, Romania, diudea@chem.ubbcluj.ro</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimensionality of big data sets explored by Cluj descriptors</atitle><jtitle>Studia Universitatis Babeș-Bolyai. Chemia</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>62</volume><issue>3</issue><spage>197</spage><epage>204</epage><pages>197-204</pages><issn>1224-7154</issn><eissn>2065-9520</eissn><abstract>Dimensionality of a relatively big data set (95 compounds) observed for toxicity (mutagenicity) was explored in order to compute QSAR models. Distinct molecular descriptors were used. Dimensionality of data, using PCA, correlation plots and clustering, was evaluated. Analyzing data dimensionality allowed model optimization. Docking studies and PCA were used in order to expand data dimensionality. Pearson correlation coefficient ([r.sup.2]) values, obtained for both perceptive and predictive models, were satisfactory. Keywords: topological descriptor, QSAR, data dimensionality, mutagenity, principal component analysis (PCA), Ames test.</abstract><pub>Universitatea Babes-Bolyai. Chemia</pub><doi>10.24193/subbchem.2017.3.16</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1224-7154 |
ispartof | Studia Universitatis Babeș-Bolyai. Chemia, 2017-01, Vol.62 (3), p.197-204 |
issn | 1224-7154 2065-9520 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A524380370 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Dimensionality of big data sets explored by Cluj descriptors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimensionality%20of%20big%20data%20sets%20explored%20by%20Cluj%20descriptors&rft.jtitle=Studia%20Universitatis%20Babe%C8%99-Bolyai.%20Chemia&rft.au=Lungu,%20Claudiu&rft.aucorp=Babes-Bolyai%20University,%20Faculty%20of%20Chemistry%20and%20Chemical%20Engineering,%20400028%20Cluj-Napoca,%20Romania&rft.date=2017-01-01&rft.volume=62&rft.issue=3&rft.spage=197&rft.epage=204&rft.pages=197-204&rft.issn=1224-7154&rft.eissn=2065-9520&rft_id=info:doi/10.24193/subbchem.2017.3.16&rft_dat=%3Cgale_cross%3EA524380370%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A524380370&rfr_iscdi=true |