Centralizers in the R. Thompson group [V.sub.n]
Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of on the Cantor set C. We make use of revealing tree pairs as developed by Bri...
Gespeichert in:
Veröffentlicht in: | Groups, geometry and dynamics geometry and dynamics, 2013-12, Vol.7 (4), p.821 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 821 |
container_title | Groups, geometry and dynamics |
container_volume | 7 |
creator | Bleak, Collin Bowman, Hannah Lynch, Alison Gordon Graham, Garrett Hughes, Jacob Matucci, Francesco Sapir, Eugenia |
description | Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar from which we derive discrete train tracks and flow graphs to assist us in our analysis. A consequence of our structure theorem is that element centralizers are finitely generated. Along the way we give a short argument using revealing tree pairs which shows that cyclic groups are undistorted in [V.sub.n]. Mathematics Subject Classification (2010). 20F65, 20E07, 37C85. Keywords. Conjugacy, centralizer, Thompson's group V, train track, flow graph. |
doi_str_mv | 10.4171/GGD/207 |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A502120618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A502120618</galeid><sourcerecordid>A502120618</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A5021206183</originalsourceid><addsrcrecordid>eNpjYOA3NNAzMTQ31Hd3d9E3MjBnYeA0NDMz1DUHsjkYuIqLswwMzEzMjQ04GfSdU_NKihJzMqtSi4oVMvMUSjJSFYL0FEIy8nMLivPzFNKL8ksLFKLD9IpLk_TyYnkYWNMSc4pTeaE0N4Oem2uIs4duemJOanxmXlo-0LRkIExJzc1Mzs9LTcsEijuaGhgZGhmYGVoYk6wBAM0BPL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Centralizers in the R. Thompson group [V.sub.n]</title><source>European Mathematical Society Publishing House</source><creator>Bleak, Collin ; Bowman, Hannah ; Lynch, Alison Gordon ; Graham, Garrett ; Hughes, Jacob ; Matucci, Francesco ; Sapir, Eugenia</creator><creatorcontrib>Bleak, Collin ; Bowman, Hannah ; Lynch, Alison Gordon ; Graham, Garrett ; Hughes, Jacob ; Matucci, Francesco ; Sapir, Eugenia</creatorcontrib><description>Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of <[alpha]> on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar from which we derive discrete train tracks and flow graphs to assist us in our analysis. A consequence of our structure theorem is that element centralizers are finitely generated. Along the way we give a short argument using revealing tree pairs which shows that cyclic groups are undistorted in [V.sub.n]. Mathematics Subject Classification (2010). 20F65, 20E07, 37C85. Keywords. Conjugacy, centralizer, Thompson's group V, train track, flow graph.</description><identifier>ISSN: 1661-7207</identifier><identifier>DOI: 10.4171/GGD/207</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Graph theory ; Groups (Mathematics) ; Mathematical research</subject><ispartof>Groups, geometry and dynamics, 2013-12, Vol.7 (4), p.821</ispartof><rights>COPYRIGHT 2013 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bleak, Collin</creatorcontrib><creatorcontrib>Bowman, Hannah</creatorcontrib><creatorcontrib>Lynch, Alison Gordon</creatorcontrib><creatorcontrib>Graham, Garrett</creatorcontrib><creatorcontrib>Hughes, Jacob</creatorcontrib><creatorcontrib>Matucci, Francesco</creatorcontrib><creatorcontrib>Sapir, Eugenia</creatorcontrib><title>Centralizers in the R. Thompson group [V.sub.n]</title><title>Groups, geometry and dynamics</title><description>Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of <[alpha]> on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar from which we derive discrete train tracks and flow graphs to assist us in our analysis. A consequence of our structure theorem is that element centralizers are finitely generated. Along the way we give a short argument using revealing tree pairs which shows that cyclic groups are undistorted in [V.sub.n]. Mathematics Subject Classification (2010). 20F65, 20E07, 37C85. Keywords. Conjugacy, centralizer, Thompson's group V, train track, flow graph.</description><subject>Graph theory</subject><subject>Groups (Mathematics)</subject><subject>Mathematical research</subject><issn>1661-7207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYOA3NNAzMTQ31Hd3d9E3MjBnYeA0NDMz1DUHsjkYuIqLswwMzEzMjQ04GfSdU_NKihJzMqtSi4oVMvMUSjJSFYL0FEIy8nMLivPzFNKL8ksLFKLD9IpLk_TyYnkYWNMSc4pTeaE0N4Oem2uIs4duemJOanxmXlo-0LRkIExJzc1Mzs9LTcsEijuaGhgZGhmYGVoYk6wBAM0BPL8</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Bleak, Collin</creator><creator>Bowman, Hannah</creator><creator>Lynch, Alison Gordon</creator><creator>Graham, Garrett</creator><creator>Hughes, Jacob</creator><creator>Matucci, Francesco</creator><creator>Sapir, Eugenia</creator><general>European Mathematical Society Publishing House</general><scope/></search><sort><creationdate>20131201</creationdate><title>Centralizers in the R. Thompson group [V.sub.n]</title><author>Bleak, Collin ; Bowman, Hannah ; Lynch, Alison Gordon ; Graham, Garrett ; Hughes, Jacob ; Matucci, Francesco ; Sapir, Eugenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A5021206183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Graph theory</topic><topic>Groups (Mathematics)</topic><topic>Mathematical research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bleak, Collin</creatorcontrib><creatorcontrib>Bowman, Hannah</creatorcontrib><creatorcontrib>Lynch, Alison Gordon</creatorcontrib><creatorcontrib>Graham, Garrett</creatorcontrib><creatorcontrib>Hughes, Jacob</creatorcontrib><creatorcontrib>Matucci, Francesco</creatorcontrib><creatorcontrib>Sapir, Eugenia</creatorcontrib><jtitle>Groups, geometry and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bleak, Collin</au><au>Bowman, Hannah</au><au>Lynch, Alison Gordon</au><au>Graham, Garrett</au><au>Hughes, Jacob</au><au>Matucci, Francesco</au><au>Sapir, Eugenia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centralizers in the R. Thompson group [V.sub.n]</atitle><jtitle>Groups, geometry and dynamics</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>821</spage><pages>821-</pages><issn>1661-7207</issn><abstract>Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of <[alpha]> on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar from which we derive discrete train tracks and flow graphs to assist us in our analysis. A consequence of our structure theorem is that element centralizers are finitely generated. Along the way we give a short argument using revealing tree pairs which shows that cyclic groups are undistorted in [V.sub.n]. Mathematics Subject Classification (2010). 20F65, 20E07, 37C85. Keywords. Conjugacy, centralizer, Thompson's group V, train track, flow graph.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/GGD/207</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-7207 |
ispartof | Groups, geometry and dynamics, 2013-12, Vol.7 (4), p.821 |
issn | 1661-7207 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A502120618 |
source | European Mathematical Society Publishing House |
subjects | Graph theory Groups (Mathematics) Mathematical research |
title | Centralizers in the R. Thompson group [V.sub.n] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centralizers%20in%20the%20R.%20Thompson%20group%20%5BV.sub.n%5D&rft.jtitle=Groups,%20geometry%20and%20dynamics&rft.au=Bleak,%20Collin&rft.date=2013-12-01&rft.volume=7&rft.issue=4&rft.spage=821&rft.pages=821-&rft.issn=1661-7207&rft_id=info:doi/10.4171/GGD/207&rft_dat=%3Cgale%3EA502120618%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A502120618&rfr_iscdi=true |