Centralizers in the R. Thompson group [V.sub.n]

Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of on the Cantor set C. We make use of revealing tree pairs as developed by Bri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2013-12, Vol.7 (4), p.821
Hauptverfasser: Bleak, Collin, Bowman, Hannah, Lynch, Alison Gordon, Graham, Garrett, Hughes, Jacob, Matucci, Francesco, Sapir, Eugenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 821
container_title Groups, geometry and dynamics
container_volume 7
creator Bleak, Collin
Bowman, Hannah
Lynch, Alison Gordon
Graham, Garrett
Hughes, Jacob
Matucci, Francesco
Sapir, Eugenia
description Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar from which we derive discrete train tracks and flow graphs to assist us in our analysis. A consequence of our structure theorem is that element centralizers are finitely generated. Along the way we give a short argument using revealing tree pairs which shows that cyclic groups are undistorted in [V.sub.n]. Mathematics Subject Classification (2010). 20F65, 20E07, 37C85. Keywords. Conjugacy, centralizer, Thompson's group V, train track, flow graph.
doi_str_mv 10.4171/GGD/207
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A502120618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A502120618</galeid><sourcerecordid>A502120618</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A5021206183</originalsourceid><addsrcrecordid>eNpjYOA3NNAzMTQ31Hd3d9E3MjBnYeA0NDMz1DUHsjkYuIqLswwMzEzMjQ04GfSdU_NKihJzMqtSi4oVMvMUSjJSFYL0FEIy8nMLivPzFNKL8ksLFKLD9IpLk_TyYnkYWNMSc4pTeaE0N4Oem2uIs4duemJOanxmXlo-0LRkIExJzc1Mzs9LTcsEijuaGhgZGhmYGVoYk6wBAM0BPL8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Centralizers in the R. Thompson group [V.sub.n]</title><source>European Mathematical Society Publishing House</source><creator>Bleak, Collin ; Bowman, Hannah ; Lynch, Alison Gordon ; Graham, Garrett ; Hughes, Jacob ; Matucci, Francesco ; Sapir, Eugenia</creator><creatorcontrib>Bleak, Collin ; Bowman, Hannah ; Lynch, Alison Gordon ; Graham, Garrett ; Hughes, Jacob ; Matucci, Francesco ; Sapir, Eugenia</creatorcontrib><description>Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of &lt;[alpha]&gt; on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar from which we derive discrete train tracks and flow graphs to assist us in our analysis. A consequence of our structure theorem is that element centralizers are finitely generated. Along the way we give a short argument using revealing tree pairs which shows that cyclic groups are undistorted in [V.sub.n]. Mathematics Subject Classification (2010). 20F65, 20E07, 37C85. Keywords. Conjugacy, centralizer, Thompson's group V, train track, flow graph.</description><identifier>ISSN: 1661-7207</identifier><identifier>DOI: 10.4171/GGD/207</identifier><language>eng</language><publisher>European Mathematical Society Publishing House</publisher><subject>Graph theory ; Groups (Mathematics) ; Mathematical research</subject><ispartof>Groups, geometry and dynamics, 2013-12, Vol.7 (4), p.821</ispartof><rights>COPYRIGHT 2013 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Bleak, Collin</creatorcontrib><creatorcontrib>Bowman, Hannah</creatorcontrib><creatorcontrib>Lynch, Alison Gordon</creatorcontrib><creatorcontrib>Graham, Garrett</creatorcontrib><creatorcontrib>Hughes, Jacob</creatorcontrib><creatorcontrib>Matucci, Francesco</creatorcontrib><creatorcontrib>Sapir, Eugenia</creatorcontrib><title>Centralizers in the R. Thompson group [V.sub.n]</title><title>Groups, geometry and dynamics</title><description>Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of &lt;[alpha]&gt; on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar from which we derive discrete train tracks and flow graphs to assist us in our analysis. A consequence of our structure theorem is that element centralizers are finitely generated. Along the way we give a short argument using revealing tree pairs which shows that cyclic groups are undistorted in [V.sub.n]. Mathematics Subject Classification (2010). 20F65, 20E07, 37C85. Keywords. Conjugacy, centralizer, Thompson's group V, train track, flow graph.</description><subject>Graph theory</subject><subject>Groups (Mathematics)</subject><subject>Mathematical research</subject><issn>1661-7207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYOA3NNAzMTQ31Hd3d9E3MjBnYeA0NDMz1DUHsjkYuIqLswwMzEzMjQ04GfSdU_NKihJzMqtSi4oVMvMUSjJSFYL0FEIy8nMLivPzFNKL8ksLFKLD9IpLk_TyYnkYWNMSc4pTeaE0N4Oem2uIs4duemJOanxmXlo-0LRkIExJzc1Mzs9LTcsEijuaGhgZGhmYGVoYk6wBAM0BPL8</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Bleak, Collin</creator><creator>Bowman, Hannah</creator><creator>Lynch, Alison Gordon</creator><creator>Graham, Garrett</creator><creator>Hughes, Jacob</creator><creator>Matucci, Francesco</creator><creator>Sapir, Eugenia</creator><general>European Mathematical Society Publishing House</general><scope/></search><sort><creationdate>20131201</creationdate><title>Centralizers in the R. Thompson group [V.sub.n]</title><author>Bleak, Collin ; Bowman, Hannah ; Lynch, Alison Gordon ; Graham, Garrett ; Hughes, Jacob ; Matucci, Francesco ; Sapir, Eugenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A5021206183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Graph theory</topic><topic>Groups (Mathematics)</topic><topic>Mathematical research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bleak, Collin</creatorcontrib><creatorcontrib>Bowman, Hannah</creatorcontrib><creatorcontrib>Lynch, Alison Gordon</creatorcontrib><creatorcontrib>Graham, Garrett</creatorcontrib><creatorcontrib>Hughes, Jacob</creatorcontrib><creatorcontrib>Matucci, Francesco</creatorcontrib><creatorcontrib>Sapir, Eugenia</creatorcontrib><jtitle>Groups, geometry and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bleak, Collin</au><au>Bowman, Hannah</au><au>Lynch, Alison Gordon</au><au>Graham, Garrett</au><au>Hughes, Jacob</au><au>Matucci, Francesco</au><au>Sapir, Eugenia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Centralizers in the R. Thompson group [V.sub.n]</atitle><jtitle>Groups, geometry and dynamics</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>821</spage><pages>821-</pages><issn>1661-7207</issn><abstract>Let n [greater than or equal to] 2 and let [alpha] [member of] [V.sub.n] be an element in the Higman-Thompson group [V.sub.n]. We study the structure of the centralizer of a 2 Vn through a careful analysis of the action of &lt;[alpha]&gt; on the Cantor set C. We make use of revealing tree pairs as developed by Brin and Salazar from which we derive discrete train tracks and flow graphs to assist us in our analysis. A consequence of our structure theorem is that element centralizers are finitely generated. Along the way we give a short argument using revealing tree pairs which shows that cyclic groups are undistorted in [V.sub.n]. Mathematics Subject Classification (2010). 20F65, 20E07, 37C85. Keywords. Conjugacy, centralizer, Thompson's group V, train track, flow graph.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/GGD/207</doi></addata></record>
fulltext fulltext
identifier ISSN: 1661-7207
ispartof Groups, geometry and dynamics, 2013-12, Vol.7 (4), p.821
issn 1661-7207
language eng
recordid cdi_gale_infotracacademiconefile_A502120618
source European Mathematical Society Publishing House
subjects Graph theory
Groups (Mathematics)
Mathematical research
title Centralizers in the R. Thompson group [V.sub.n]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Centralizers%20in%20the%20R.%20Thompson%20group%20%5BV.sub.n%5D&rft.jtitle=Groups,%20geometry%20and%20dynamics&rft.au=Bleak,%20Collin&rft.date=2013-12-01&rft.volume=7&rft.issue=4&rft.spage=821&rft.pages=821-&rft.issn=1661-7207&rft_id=info:doi/10.4171/GGD/207&rft_dat=%3Cgale%3EA502120618%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A502120618&rfr_iscdi=true