SoilGrids250m: Global gridded soil information based on machine learning
This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capa...
Gespeichert in:
Veröffentlicht in: | PLoS ONE 2017, Vol.12 (2), p.e0169748 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e0169748 |
container_title | PLoS ONE |
container_volume | 12 |
creator | Hengl, Tomislav Mendes de Jesus, Jorge Heuvelink, Gerard B. M Ruiperez Gonzalez, Maria Kilibarda, Milan Blagotic, Aleksandar Shangguan, Wei Wright, Marvin N Geng, Xiaoyuan Bauer-Marschallinger, Bernhard Guevara, Mario Antonio Vargas, Rodrigo MacMillan, Robert A Batjes, Niels H Leenaars, Johan G. B Ribeiro, Eloi Wheeler, Ichsani Mantel, Stephan Kempen, Bas |
description | This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License. |
doi_str_mv | 10.1371/journal.pone.0169748 |
format | Report |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A481461341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481461341</galeid><sourcerecordid>A481461341</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A4814613413</originalsourceid><addsrcrecordid>eNqVjssOgjAQRRujifj4Axf9AbClUMCdMQp73ZsBCpaU1rT4_9bEhVszizk5NzO5CO0oiSjL6H4wL6tBRU-jRUQoL7Ikn6GAFiwOeUzY_IeXaOXcQEjKcs4DVF2NVKWVrYtTMh5wqUwNCvfetKLFzqdY6s7YESZpNK7Bee1hhOYhtcBKgNVS9xu06EA5sf3uNYou59upCntQ4v55MVlo_LRilI0v2knvj0lOE05ZQtnfB29US00F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>SoilGrids250m: Global gridded soil information based on machine learning</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hengl, Tomislav ; Mendes de Jesus, Jorge ; Heuvelink, Gerard B. M ; Ruiperez Gonzalez, Maria ; Kilibarda, Milan ; Blagotic, Aleksandar ; Shangguan, Wei ; Wright, Marvin N ; Geng, Xiaoyuan ; Bauer-Marschallinger, Bernhard ; Guevara, Mario Antonio ; Vargas, Rodrigo ; MacMillan, Robert A ; Batjes, Niels H ; Leenaars, Johan G. B ; Ribeiro, Eloi ; Wheeler, Ichsani ; Mantel, Stephan ; Kempen, Bas</creator><creatorcontrib>Hengl, Tomislav ; Mendes de Jesus, Jorge ; Heuvelink, Gerard B. M ; Ruiperez Gonzalez, Maria ; Kilibarda, Milan ; Blagotic, Aleksandar ; Shangguan, Wei ; Wright, Marvin N ; Geng, Xiaoyuan ; Bauer-Marschallinger, Bernhard ; Guevara, Mario Antonio ; Vargas, Rodrigo ; MacMillan, Robert A ; Batjes, Niels H ; Leenaars, Johan G. B ; Ribeiro, Eloi ; Wheeler, Ichsani ; Mantel, Stephan ; Kempen, Bas</creatorcontrib><description>This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169748</identifier><language>eng</language><publisher>Public Library of Science</publisher><subject>Machine learning ; Physiological aspects ; Properties ; Soils</subject><ispartof>PLoS ONE, 2017, Vol.12 (2), p.e0169748</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,860,4476,27902</link.rule.ids></links><search><creatorcontrib>Hengl, Tomislav</creatorcontrib><creatorcontrib>Mendes de Jesus, Jorge</creatorcontrib><creatorcontrib>Heuvelink, Gerard B. M</creatorcontrib><creatorcontrib>Ruiperez Gonzalez, Maria</creatorcontrib><creatorcontrib>Kilibarda, Milan</creatorcontrib><creatorcontrib>Blagotic, Aleksandar</creatorcontrib><creatorcontrib>Shangguan, Wei</creatorcontrib><creatorcontrib>Wright, Marvin N</creatorcontrib><creatorcontrib>Geng, Xiaoyuan</creatorcontrib><creatorcontrib>Bauer-Marschallinger, Bernhard</creatorcontrib><creatorcontrib>Guevara, Mario Antonio</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><creatorcontrib>MacMillan, Robert A</creatorcontrib><creatorcontrib>Batjes, Niels H</creatorcontrib><creatorcontrib>Leenaars, Johan G. B</creatorcontrib><creatorcontrib>Ribeiro, Eloi</creatorcontrib><creatorcontrib>Wheeler, Ichsani</creatorcontrib><creatorcontrib>Mantel, Stephan</creatorcontrib><creatorcontrib>Kempen, Bas</creatorcontrib><title>SoilGrids250m: Global gridded soil information based on machine learning</title><title>PLoS ONE</title><description>This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.</description><subject>Machine learning</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Soils</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2017</creationdate><recordtype>report</recordtype><sourceid/><recordid>eNqVjssOgjAQRRujifj4Axf9AbClUMCdMQp73ZsBCpaU1rT4_9bEhVszizk5NzO5CO0oiSjL6H4wL6tBRU-jRUQoL7Ikn6GAFiwOeUzY_IeXaOXcQEjKcs4DVF2NVKWVrYtTMh5wqUwNCvfetKLFzqdY6s7YESZpNK7Bee1hhOYhtcBKgNVS9xu06EA5sf3uNYou59upCntQ4v55MVlo_LRilI0v2knvj0lOE05ZQtnfB29US00F</recordid><startdate>20170216</startdate><enddate>20170216</enddate><creator>Hengl, Tomislav</creator><creator>Mendes de Jesus, Jorge</creator><creator>Heuvelink, Gerard B. M</creator><creator>Ruiperez Gonzalez, Maria</creator><creator>Kilibarda, Milan</creator><creator>Blagotic, Aleksandar</creator><creator>Shangguan, Wei</creator><creator>Wright, Marvin N</creator><creator>Geng, Xiaoyuan</creator><creator>Bauer-Marschallinger, Bernhard</creator><creator>Guevara, Mario Antonio</creator><creator>Vargas, Rodrigo</creator><creator>MacMillan, Robert A</creator><creator>Batjes, Niels H</creator><creator>Leenaars, Johan G. B</creator><creator>Ribeiro, Eloi</creator><creator>Wheeler, Ichsani</creator><creator>Mantel, Stephan</creator><creator>Kempen, Bas</creator><general>Public Library of Science</general><scope/></search><sort><creationdate>20170216</creationdate><title>SoilGrids250m: Global gridded soil information based on machine learning</title><author>Hengl, Tomislav ; Mendes de Jesus, Jorge ; Heuvelink, Gerard B. M ; Ruiperez Gonzalez, Maria ; Kilibarda, Milan ; Blagotic, Aleksandar ; Shangguan, Wei ; Wright, Marvin N ; Geng, Xiaoyuan ; Bauer-Marschallinger, Bernhard ; Guevara, Mario Antonio ; Vargas, Rodrigo ; MacMillan, Robert A ; Batjes, Niels H ; Leenaars, Johan G. B ; Ribeiro, Eloi ; Wheeler, Ichsani ; Mantel, Stephan ; Kempen, Bas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A4814613413</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Machine learning</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Soils</topic><toplevel>online_resources</toplevel><creatorcontrib>Hengl, Tomislav</creatorcontrib><creatorcontrib>Mendes de Jesus, Jorge</creatorcontrib><creatorcontrib>Heuvelink, Gerard B. M</creatorcontrib><creatorcontrib>Ruiperez Gonzalez, Maria</creatorcontrib><creatorcontrib>Kilibarda, Milan</creatorcontrib><creatorcontrib>Blagotic, Aleksandar</creatorcontrib><creatorcontrib>Shangguan, Wei</creatorcontrib><creatorcontrib>Wright, Marvin N</creatorcontrib><creatorcontrib>Geng, Xiaoyuan</creatorcontrib><creatorcontrib>Bauer-Marschallinger, Bernhard</creatorcontrib><creatorcontrib>Guevara, Mario Antonio</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><creatorcontrib>MacMillan, Robert A</creatorcontrib><creatorcontrib>Batjes, Niels H</creatorcontrib><creatorcontrib>Leenaars, Johan G. B</creatorcontrib><creatorcontrib>Ribeiro, Eloi</creatorcontrib><creatorcontrib>Wheeler, Ichsani</creatorcontrib><creatorcontrib>Mantel, Stephan</creatorcontrib><creatorcontrib>Kempen, Bas</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hengl, Tomislav</au><au>Mendes de Jesus, Jorge</au><au>Heuvelink, Gerard B. M</au><au>Ruiperez Gonzalez, Maria</au><au>Kilibarda, Milan</au><au>Blagotic, Aleksandar</au><au>Shangguan, Wei</au><au>Wright, Marvin N</au><au>Geng, Xiaoyuan</au><au>Bauer-Marschallinger, Bernhard</au><au>Guevara, Mario Antonio</au><au>Vargas, Rodrigo</au><au>MacMillan, Robert A</au><au>Batjes, Niels H</au><au>Leenaars, Johan G. B</au><au>Ribeiro, Eloi</au><au>Wheeler, Ichsani</au><au>Mantel, Stephan</au><au>Kempen, Bas</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>SoilGrids250m: Global gridded soil information based on machine learning</atitle><jtitle>PLoS ONE</jtitle><date>2017-02-16</date><risdate>2017</risdate><volume>12</volume><issue>2</issue><spage>e0169748</spage><pages>e0169748-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.</abstract><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0169748</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PLoS ONE, 2017, Vol.12 (2), p.e0169748 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A481461341 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Machine learning Physiological aspects Properties Soils |
title | SoilGrids250m: Global gridded soil information based on machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=SoilGrids250m:%20Global%20gridded%20soil%20information%20based%20on%20machine%20learning&rft.jtitle=PLoS%20ONE&rft.au=Hengl,%20Tomislav&rft.date=2017-02-16&rft.volume=12&rft.issue=2&rft.spage=e0169748&rft.pages=e0169748-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169748&rft_dat=%3Cgale%3EA481461341%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A481461341&rfr_iscdi=true |