SoilGrids250m: Global gridded soil information based on machine learning

This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS ONE 2017, Vol.12 (2), p.e0169748
Hauptverfasser: Hengl, Tomislav, Mendes de Jesus, Jorge, Heuvelink, Gerard B. M, Ruiperez Gonzalez, Maria, Kilibarda, Milan, Blagotic, Aleksandar, Shangguan, Wei, Wright, Marvin N, Geng, Xiaoyuan, Bauer-Marschallinger, Bernhard, Guevara, Mario Antonio, Vargas, Rodrigo, MacMillan, Robert A, Batjes, Niels H, Leenaars, Johan G. B, Ribeiro, Eloi, Wheeler, Ichsani, Mantel, Stephan, Kempen, Bas
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e0169748
container_title PLoS ONE
container_volume 12
creator Hengl, Tomislav
Mendes de Jesus, Jorge
Heuvelink, Gerard B. M
Ruiperez Gonzalez, Maria
Kilibarda, Milan
Blagotic, Aleksandar
Shangguan, Wei
Wright, Marvin N
Geng, Xiaoyuan
Bauer-Marschallinger, Bernhard
Guevara, Mario Antonio
Vargas, Rodrigo
MacMillan, Robert A
Batjes, Niels H
Leenaars, Johan G. B
Ribeiro, Eloi
Wheeler, Ichsani
Mantel, Stephan
Kempen, Bas
description This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.
doi_str_mv 10.1371/journal.pone.0169748
format Report
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A481461341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481461341</galeid><sourcerecordid>A481461341</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A4814613413</originalsourceid><addsrcrecordid>eNqVjssOgjAQRRujifj4Axf9AbClUMCdMQp73ZsBCpaU1rT4_9bEhVszizk5NzO5CO0oiSjL6H4wL6tBRU-jRUQoL7Ikn6GAFiwOeUzY_IeXaOXcQEjKcs4DVF2NVKWVrYtTMh5wqUwNCvfetKLFzqdY6s7YESZpNK7Bee1hhOYhtcBKgNVS9xu06EA5sf3uNYou59upCntQ4v55MVlo_LRilI0v2knvj0lOE05ZQtnfB29US00F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>SoilGrids250m: Global gridded soil information based on machine learning</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hengl, Tomislav ; Mendes de Jesus, Jorge ; Heuvelink, Gerard B. M ; Ruiperez Gonzalez, Maria ; Kilibarda, Milan ; Blagotic, Aleksandar ; Shangguan, Wei ; Wright, Marvin N ; Geng, Xiaoyuan ; Bauer-Marschallinger, Bernhard ; Guevara, Mario Antonio ; Vargas, Rodrigo ; MacMillan, Robert A ; Batjes, Niels H ; Leenaars, Johan G. B ; Ribeiro, Eloi ; Wheeler, Ichsani ; Mantel, Stephan ; Kempen, Bas</creator><creatorcontrib>Hengl, Tomislav ; Mendes de Jesus, Jorge ; Heuvelink, Gerard B. M ; Ruiperez Gonzalez, Maria ; Kilibarda, Milan ; Blagotic, Aleksandar ; Shangguan, Wei ; Wright, Marvin N ; Geng, Xiaoyuan ; Bauer-Marschallinger, Bernhard ; Guevara, Mario Antonio ; Vargas, Rodrigo ; MacMillan, Robert A ; Batjes, Niels H ; Leenaars, Johan G. B ; Ribeiro, Eloi ; Wheeler, Ichsani ; Mantel, Stephan ; Kempen, Bas</creatorcontrib><description>This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0169748</identifier><language>eng</language><publisher>Public Library of Science</publisher><subject>Machine learning ; Physiological aspects ; Properties ; Soils</subject><ispartof>PLoS ONE, 2017, Vol.12 (2), p.e0169748</ispartof><rights>COPYRIGHT 2017 Public Library of Science</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,860,4476,27902</link.rule.ids></links><search><creatorcontrib>Hengl, Tomislav</creatorcontrib><creatorcontrib>Mendes de Jesus, Jorge</creatorcontrib><creatorcontrib>Heuvelink, Gerard B. M</creatorcontrib><creatorcontrib>Ruiperez Gonzalez, Maria</creatorcontrib><creatorcontrib>Kilibarda, Milan</creatorcontrib><creatorcontrib>Blagotic, Aleksandar</creatorcontrib><creatorcontrib>Shangguan, Wei</creatorcontrib><creatorcontrib>Wright, Marvin N</creatorcontrib><creatorcontrib>Geng, Xiaoyuan</creatorcontrib><creatorcontrib>Bauer-Marschallinger, Bernhard</creatorcontrib><creatorcontrib>Guevara, Mario Antonio</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><creatorcontrib>MacMillan, Robert A</creatorcontrib><creatorcontrib>Batjes, Niels H</creatorcontrib><creatorcontrib>Leenaars, Johan G. B</creatorcontrib><creatorcontrib>Ribeiro, Eloi</creatorcontrib><creatorcontrib>Wheeler, Ichsani</creatorcontrib><creatorcontrib>Mantel, Stephan</creatorcontrib><creatorcontrib>Kempen, Bas</creatorcontrib><title>SoilGrids250m: Global gridded soil information based on machine learning</title><title>PLoS ONE</title><description>This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.</description><subject>Machine learning</subject><subject>Physiological aspects</subject><subject>Properties</subject><subject>Soils</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2017</creationdate><recordtype>report</recordtype><sourceid/><recordid>eNqVjssOgjAQRRujifj4Axf9AbClUMCdMQp73ZsBCpaU1rT4_9bEhVszizk5NzO5CO0oiSjL6H4wL6tBRU-jRUQoL7Ikn6GAFiwOeUzY_IeXaOXcQEjKcs4DVF2NVKWVrYtTMh5wqUwNCvfetKLFzqdY6s7YESZpNK7Bee1hhOYhtcBKgNVS9xu06EA5sf3uNYou59upCntQ4v55MVlo_LRilI0v2knvj0lOE05ZQtnfB29US00F</recordid><startdate>20170216</startdate><enddate>20170216</enddate><creator>Hengl, Tomislav</creator><creator>Mendes de Jesus, Jorge</creator><creator>Heuvelink, Gerard B. M</creator><creator>Ruiperez Gonzalez, Maria</creator><creator>Kilibarda, Milan</creator><creator>Blagotic, Aleksandar</creator><creator>Shangguan, Wei</creator><creator>Wright, Marvin N</creator><creator>Geng, Xiaoyuan</creator><creator>Bauer-Marschallinger, Bernhard</creator><creator>Guevara, Mario Antonio</creator><creator>Vargas, Rodrigo</creator><creator>MacMillan, Robert A</creator><creator>Batjes, Niels H</creator><creator>Leenaars, Johan G. B</creator><creator>Ribeiro, Eloi</creator><creator>Wheeler, Ichsani</creator><creator>Mantel, Stephan</creator><creator>Kempen, Bas</creator><general>Public Library of Science</general><scope/></search><sort><creationdate>20170216</creationdate><title>SoilGrids250m: Global gridded soil information based on machine learning</title><author>Hengl, Tomislav ; Mendes de Jesus, Jorge ; Heuvelink, Gerard B. M ; Ruiperez Gonzalez, Maria ; Kilibarda, Milan ; Blagotic, Aleksandar ; Shangguan, Wei ; Wright, Marvin N ; Geng, Xiaoyuan ; Bauer-Marschallinger, Bernhard ; Guevara, Mario Antonio ; Vargas, Rodrigo ; MacMillan, Robert A ; Batjes, Niels H ; Leenaars, Johan G. B ; Ribeiro, Eloi ; Wheeler, Ichsani ; Mantel, Stephan ; Kempen, Bas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A4814613413</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Machine learning</topic><topic>Physiological aspects</topic><topic>Properties</topic><topic>Soils</topic><toplevel>online_resources</toplevel><creatorcontrib>Hengl, Tomislav</creatorcontrib><creatorcontrib>Mendes de Jesus, Jorge</creatorcontrib><creatorcontrib>Heuvelink, Gerard B. M</creatorcontrib><creatorcontrib>Ruiperez Gonzalez, Maria</creatorcontrib><creatorcontrib>Kilibarda, Milan</creatorcontrib><creatorcontrib>Blagotic, Aleksandar</creatorcontrib><creatorcontrib>Shangguan, Wei</creatorcontrib><creatorcontrib>Wright, Marvin N</creatorcontrib><creatorcontrib>Geng, Xiaoyuan</creatorcontrib><creatorcontrib>Bauer-Marschallinger, Bernhard</creatorcontrib><creatorcontrib>Guevara, Mario Antonio</creatorcontrib><creatorcontrib>Vargas, Rodrigo</creatorcontrib><creatorcontrib>MacMillan, Robert A</creatorcontrib><creatorcontrib>Batjes, Niels H</creatorcontrib><creatorcontrib>Leenaars, Johan G. B</creatorcontrib><creatorcontrib>Ribeiro, Eloi</creatorcontrib><creatorcontrib>Wheeler, Ichsani</creatorcontrib><creatorcontrib>Mantel, Stephan</creatorcontrib><creatorcontrib>Kempen, Bas</creatorcontrib></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hengl, Tomislav</au><au>Mendes de Jesus, Jorge</au><au>Heuvelink, Gerard B. M</au><au>Ruiperez Gonzalez, Maria</au><au>Kilibarda, Milan</au><au>Blagotic, Aleksandar</au><au>Shangguan, Wei</au><au>Wright, Marvin N</au><au>Geng, Xiaoyuan</au><au>Bauer-Marschallinger, Bernhard</au><au>Guevara, Mario Antonio</au><au>Vargas, Rodrigo</au><au>MacMillan, Robert A</au><au>Batjes, Niels H</au><au>Leenaars, Johan G. B</au><au>Ribeiro, Eloi</au><au>Wheeler, Ichsani</au><au>Mantel, Stephan</au><au>Kempen, Bas</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><atitle>SoilGrids250m: Global gridded soil information based on machine learning</atitle><jtitle>PLoS ONE</jtitle><date>2017-02-16</date><risdate>2017</risdate><volume>12</volume><issue>2</issue><spage>e0169748</spage><pages>e0169748-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper describes the technical development and accuracy assessment of the most recent and improved version of the SoilGrids system at 250m resolution (June 2016 update). SoilGrids provides global predictions for standard numeric soil properties (organic carbon, bulk density, Cation Exchange Capacity (CEC), pH, soil texture fractions and coarse fragments) at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm), in addition to predictions of depth to bedrock and distribution of soil classes based on the World Reference Base (WRB) and USDA classification systems (ca. 280 raster layers in total). Predictions were based on ca. 150,000 soil profiles used for training and a stack of 158 remote sensing-based soil covariates (primarily derived from MODIS land products, SRTM DEM derivatives, climatic images and global landform and lithology maps), which were used to fit an ensemble of machine learning methods-random forest and gradient boosting and/or multinomial logistic regression-as implemented in the R packages ranger, xgboost, nnet and caret. The results of 10-fold cross-validation show that the ensemble models explain between 56% (coarse fragments) and 83% (pH) of variation with an overall average of 61%. Improvements in the relative accuracy considering the amount of variation explained, in comparison to the previous version of SoilGrids at 1 km spatial resolution, range from 60 to 230%. Improvements can be attributed to: (1) the use of machine learning instead of linear regression, (2) to considerable investments in preparing finer resolution covariate layers and (3) to insertion of additional soil profiles. Further development of SoilGrids could include refinement of methods to incorporate input uncertainties and derivation of posterior probability distributions (per pixel), and further automation of spatial modeling so that soil maps can be generated for potentially hundreds of soil variables. Another area of future research is the development of methods for multiscale merging of SoilGrids predictions with local and/or national gridded soil products (e.g. up to 50 m spatial resolution) so that increasingly more accurate, complete and consistent global soil information can be produced. SoilGrids are available under the Open Data Base License.</abstract><pub>Public Library of Science</pub><doi>10.1371/journal.pone.0169748</doi></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PLoS ONE, 2017, Vol.12 (2), p.e0169748
issn 1932-6203
1932-6203
language eng
recordid cdi_gale_infotracacademiconefile_A481461341
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Machine learning
Physiological aspects
Properties
Soils
title SoilGrids250m: Global gridded soil information based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A11%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.atitle=SoilGrids250m:%20Global%20gridded%20soil%20information%20based%20on%20machine%20learning&rft.jtitle=PLoS%20ONE&rft.au=Hengl,%20Tomislav&rft.date=2017-02-16&rft.volume=12&rft.issue=2&rft.spage=e0169748&rft.pages=e0169748-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0169748&rft_dat=%3Cgale%3EA481461341%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A481461341&rfr_iscdi=true