Properties of the Ceder Product

We study properties of the Ceder product X × b Y of topological spaces X and Y, where b ∈ Y, recently introduced by the authors. Important examples of the Ceder product are the Ceder plane and the Alexandroff double circle. In particular, for i = 0 , 1 , 2 , 3 we establish necessary and sufficient c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2015-11, Vol.67 (6), p.881-890
Hauptverfasser: Maslyuchenko, V. K., Maslyuchenko, O. V., Myronyk, O. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 890
container_issue 6
container_start_page 881
container_title Ukrainian mathematical journal
container_volume 67
creator Maslyuchenko, V. K.
Maslyuchenko, O. V.
Myronyk, O. D.
description We study properties of the Ceder product X × b Y of topological spaces X and Y, where b ∈ Y, recently introduced by the authors. Important examples of the Ceder product are the Ceder plane and the Alexandroff double circle. In particular, for i = 0 , 1 , 2 , 3 we establish necessary and sufficient conditions for the Ceder product to be a T i -space. We prove that the Ceder product X × b Y is metrizable if and only if the spaces X and Y . = Y \ b are metrizable, X is σ-discrete, and the set {b} is closed in Y. If X is not discrete, then the point b has a countable base of closed neighborhoods in Y.
doi_str_mv 10.1007/s11253-015-1120-2
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A443990500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443990500</galeid><sourcerecordid>A443990500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-f63c927818c593f9888d2e8d59bfb88723e9a60b45f1185676c7c56a42e282f33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMouFZ_gCf3D6ROks3XsRS_oKAHPYdsdlK3tLsl2R7896asZ5nDDC_zDMxDyD2DJQPQj5kxLgUFJmmZgPILUjGpBbVCq0tSATSMSmvlNbnJeQdQKKMr8vCRxiOmqcdcj7GevrFeY4epLnl3CtMtuYp-n_Hury_I1_PT5_qVbt5f3tarDQ1c24lGJYLl2jATpBXRGmM6jqaTto2tMZoLtF5B28jImJFKq6CDVL7hyA2PQizIcr679Xt0_RDHKflQqsNDH8YBY1_yVdMIa0ECFIDNQEhjzgmjO6b-4NOPY-DOStysxBUl7qzE8cLwmclld9hicrvxlIby1z_QL4MvYOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Properties of the Ceder Product</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maslyuchenko, V. K. ; Maslyuchenko, O. V. ; Myronyk, O. D.</creator><creatorcontrib>Maslyuchenko, V. K. ; Maslyuchenko, O. V. ; Myronyk, O. D.</creatorcontrib><description>We study properties of the Ceder product X × b Y of topological spaces X and Y, where b ∈ Y, recently introduced by the authors. Important examples of the Ceder product are the Ceder plane and the Alexandroff double circle. In particular, for i = 0 , 1 , 2 , 3 we establish necessary and sufficient conditions for the Ceder product to be a T i -space. We prove that the Ceder product X × b Y is metrizable if and only if the spaces X and Y . = Y \ b are metrizable, X is σ-discrete, and the set {b} is closed in Y. If X is not discrete, then the point b has a countable base of closed neighborhoods in Y.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-015-1120-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2015-11, Vol.67 (6), p.881-890</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-f63c927818c593f9888d2e8d59bfb88723e9a60b45f1185676c7c56a42e282f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-015-1120-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-015-1120-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maslyuchenko, V. K.</creatorcontrib><creatorcontrib>Maslyuchenko, O. V.</creatorcontrib><creatorcontrib>Myronyk, O. D.</creatorcontrib><title>Properties of the Ceder Product</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We study properties of the Ceder product X × b Y of topological spaces X and Y, where b ∈ Y, recently introduced by the authors. Important examples of the Ceder product are the Ceder plane and the Alexandroff double circle. In particular, for i = 0 , 1 , 2 , 3 we establish necessary and sufficient conditions for the Ceder product to be a T i -space. We prove that the Ceder product X × b Y is metrizable if and only if the spaces X and Y . = Y \ b are metrizable, X is σ-discrete, and the set {b} is closed in Y. If X is not discrete, then the point b has a countable base of closed neighborhoods in Y.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMouFZ_gCf3D6ROks3XsRS_oKAHPYdsdlK3tLsl2R7896asZ5nDDC_zDMxDyD2DJQPQj5kxLgUFJmmZgPILUjGpBbVCq0tSATSMSmvlNbnJeQdQKKMr8vCRxiOmqcdcj7GevrFeY4epLnl3CtMtuYp-n_Hury_I1_PT5_qVbt5f3tarDQ1c24lGJYLl2jATpBXRGmM6jqaTto2tMZoLtF5B28jImJFKq6CDVL7hyA2PQizIcr679Xt0_RDHKflQqsNDH8YBY1_yVdMIa0ECFIDNQEhjzgmjO6b-4NOPY-DOStysxBUl7qzE8cLwmclld9hicrvxlIby1z_QL4MvYOI</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Maslyuchenko, V. K.</creator><creator>Maslyuchenko, O. V.</creator><creator>Myronyk, O. D.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Properties of the Ceder Product</title><author>Maslyuchenko, V. K. ; Maslyuchenko, O. V. ; Myronyk, O. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-f63c927818c593f9888d2e8d59bfb88723e9a60b45f1185676c7c56a42e282f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maslyuchenko, V. K.</creatorcontrib><creatorcontrib>Maslyuchenko, O. V.</creatorcontrib><creatorcontrib>Myronyk, O. D.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maslyuchenko, V. K.</au><au>Maslyuchenko, O. V.</au><au>Myronyk, O. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of the Ceder Product</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>67</volume><issue>6</issue><spage>881</spage><epage>890</epage><pages>881-890</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We study properties of the Ceder product X × b Y of topological spaces X and Y, where b ∈ Y, recently introduced by the authors. Important examples of the Ceder product are the Ceder plane and the Alexandroff double circle. In particular, for i = 0 , 1 , 2 , 3 we establish necessary and sufficient conditions for the Ceder product to be a T i -space. We prove that the Ceder product X × b Y is metrizable if and only if the spaces X and Y . = Y \ b are metrizable, X is σ-discrete, and the set {b} is closed in Y. If X is not discrete, then the point b has a countable base of closed neighborhoods in Y.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-015-1120-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2015-11, Vol.67 (6), p.881-890
issn 0041-5995
1573-9376
language eng
recordid cdi_gale_infotracacademiconefile_A443990500
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Statistics
title Properties of the Ceder Product
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20the%20Ceder%20Product&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Maslyuchenko,%20V.%20K.&rft.date=2015-11-01&rft.volume=67&rft.issue=6&rft.spage=881&rft.epage=890&rft.pages=881-890&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-015-1120-2&rft_dat=%3Cgale_cross%3EA443990500%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A443990500&rfr_iscdi=true