Cocrystallization of Max-Phases in the Ti–Al–C System
The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at hi...
Gespeichert in:
Veröffentlicht in: | Powder metallurgy and metal ceramics 2015-11, Vol.54 (7-8), p.471-481 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 7-8 |
container_start_page | 471 |
container_title | Powder metallurgy and metal ceramics |
container_volume | 54 |
creator | Sleptsov, S. V. Bondar, A. A. Witusiewicz, V. T. Hecht, U. Hallstedt, B. Petyukh, V. M. Dovbenko, O. I. Velikanova, T. Ya |
description | The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti
41
.
5
Al
38
.
5
C
20
samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti
3
AlC
2
(N-phase of Ti
3
SiC
2
type), Ti
2
AlC (H, Cr
2
AlC type), and binary intermetallic TiAl
3
(ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt. |
doi_str_mv | 10.1007/s11106-015-9738-z |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A442890444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A442890444</galeid><sourcerecordid>A442890444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-90389eaa669cad8a47a5c5f69ce83aa5141ca1fc3e17c65d26ffe2caefef07253</originalsourceid><addsrcrecordid>eNp9kF1KAzEQx4MoWKsH8G0vkJrZZLO7j2XxCyoK1ucwpJM2ZbsryQq2T97BG3oSU9ZnGZgv5jfD_Bm7BjEDIcqbCABCcwEFr0tZ8cMJm0BRSl4LrU9TLnTFQYr8nF3EuBUiUQomrG56G_ZxwLb1Bxx832W9y57wk79sMFLMfJcNG8qW_ufre94m12SvaZ52l-zMYRvp6i9O2dvd7bJ54Ivn-8dmvuBW1uWQ7suqJkSta4urClWJhS1cqqiSiAUosAjOSoLS6mKVa-cot0iOnCjzQk7ZbNy7xpaM71w_BLTJVrTztu_I-dSfK5VXtVBKJQBGwIY-xkDOvAe_w7A3IMxRLDOKZZJY5iiWOSQmH5mYZrs1BbPtP0KX_voH-gWUu27y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cocrystallization of Max-Phases in the Ti–Al–C System</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sleptsov, S. V. ; Bondar, A. A. ; Witusiewicz, V. T. ; Hecht, U. ; Hallstedt, B. ; Petyukh, V. M. ; Dovbenko, O. I. ; Velikanova, T. Ya</creator><creatorcontrib>Sleptsov, S. V. ; Bondar, A. A. ; Witusiewicz, V. T. ; Hecht, U. ; Hallstedt, B. ; Petyukh, V. M. ; Dovbenko, O. I. ; Velikanova, T. Ya</creatorcontrib><description>The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti
41
.
5
Al
38
.
5
C
20
samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti
3
AlC
2
(N-phase of Ti
3
SiC
2
type), Ti
2
AlC (H, Cr
2
AlC type), and binary intermetallic TiAl
3
(ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.</description><identifier>ISSN: 1068-1302</identifier><identifier>EISSN: 1573-9066</identifier><identifier>DOI: 10.1007/s11106-015-9738-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Analysis ; Annealing ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Glass ; Intermetallic compounds ; Materials Science ; Metallic Materials ; Natural Materials ; X-ray diffraction</subject><ispartof>Powder metallurgy and metal ceramics, 2015-11, Vol.54 (7-8), p.471-481</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-90389eaa669cad8a47a5c5f69ce83aa5141ca1fc3e17c65d26ffe2caefef07253</citedby><cites>FETCH-LOGICAL-c397t-90389eaa669cad8a47a5c5f69ce83aa5141ca1fc3e17c65d26ffe2caefef07253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11106-015-9738-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11106-015-9738-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sleptsov, S. V.</creatorcontrib><creatorcontrib>Bondar, A. A.</creatorcontrib><creatorcontrib>Witusiewicz, V. T.</creatorcontrib><creatorcontrib>Hecht, U.</creatorcontrib><creatorcontrib>Hallstedt, B.</creatorcontrib><creatorcontrib>Petyukh, V. M.</creatorcontrib><creatorcontrib>Dovbenko, O. I.</creatorcontrib><creatorcontrib>Velikanova, T. Ya</creatorcontrib><title>Cocrystallization of Max-Phases in the Ti–Al–C System</title><title>Powder metallurgy and metal ceramics</title><addtitle>Powder Metall Met Ceram</addtitle><description>The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti
41
.
5
Al
38
.
5
C
20
samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti
3
AlC
2
(N-phase of Ti
3
SiC
2
type), Ti
2
AlC (H, Cr
2
AlC type), and binary intermetallic TiAl
3
(ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Annealing</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>X-ray diffraction</subject><issn>1068-1302</issn><issn>1573-9066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kF1KAzEQx4MoWKsH8G0vkJrZZLO7j2XxCyoK1ucwpJM2ZbsryQq2T97BG3oSU9ZnGZgv5jfD_Bm7BjEDIcqbCABCcwEFr0tZ8cMJm0BRSl4LrU9TLnTFQYr8nF3EuBUiUQomrG56G_ZxwLb1Bxx832W9y57wk79sMFLMfJcNG8qW_ufre94m12SvaZ52l-zMYRvp6i9O2dvd7bJ54Ivn-8dmvuBW1uWQ7suqJkSta4urClWJhS1cqqiSiAUosAjOSoLS6mKVa-cot0iOnCjzQk7ZbNy7xpaM71w_BLTJVrTztu_I-dSfK5VXtVBKJQBGwIY-xkDOvAe_w7A3IMxRLDOKZZJY5iiWOSQmH5mYZrs1BbPtP0KX_voH-gWUu27y</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Sleptsov, S. V.</creator><creator>Bondar, A. A.</creator><creator>Witusiewicz, V. T.</creator><creator>Hecht, U.</creator><creator>Hallstedt, B.</creator><creator>Petyukh, V. M.</creator><creator>Dovbenko, O. I.</creator><creator>Velikanova, T. Ya</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Cocrystallization of Max-Phases in the Ti–Al–C System</title><author>Sleptsov, S. V. ; Bondar, A. A. ; Witusiewicz, V. T. ; Hecht, U. ; Hallstedt, B. ; Petyukh, V. M. ; Dovbenko, O. I. ; Velikanova, T. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-90389eaa669cad8a47a5c5f69ce83aa5141ca1fc3e17c65d26ffe2caefef07253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Annealing</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sleptsov, S. V.</creatorcontrib><creatorcontrib>Bondar, A. A.</creatorcontrib><creatorcontrib>Witusiewicz, V. T.</creatorcontrib><creatorcontrib>Hecht, U.</creatorcontrib><creatorcontrib>Hallstedt, B.</creatorcontrib><creatorcontrib>Petyukh, V. M.</creatorcontrib><creatorcontrib>Dovbenko, O. I.</creatorcontrib><creatorcontrib>Velikanova, T. Ya</creatorcontrib><collection>CrossRef</collection><jtitle>Powder metallurgy and metal ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sleptsov, S. V.</au><au>Bondar, A. A.</au><au>Witusiewicz, V. T.</au><au>Hecht, U.</au><au>Hallstedt, B.</au><au>Petyukh, V. M.</au><au>Dovbenko, O. I.</au><au>Velikanova, T. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cocrystallization of Max-Phases in the Ti–Al–C System</atitle><jtitle>Powder metallurgy and metal ceramics</jtitle><stitle>Powder Metall Met Ceram</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>54</volume><issue>7-8</issue><spage>471</spage><epage>481</epage><pages>471-481</pages><issn>1068-1302</issn><eissn>1573-9066</eissn><abstract>The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti
41
.
5
Al
38
.
5
C
20
samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti
3
AlC
2
(N-phase of Ti
3
SiC
2
type), Ti
2
AlC (H, Cr
2
AlC type), and binary intermetallic TiAl
3
(ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11106-015-9738-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-1302 |
ispartof | Powder metallurgy and metal ceramics, 2015-11, Vol.54 (7-8), p.471-481 |
issn | 1068-1302 1573-9066 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A442890444 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Analysis Annealing Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Glass Intermetallic compounds Materials Science Metallic Materials Natural Materials X-ray diffraction |
title | Cocrystallization of Max-Phases in the Ti–Al–C System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cocrystallization%20of%20Max-Phases%20in%20the%20Ti%E2%80%93Al%E2%80%93C%20System&rft.jtitle=Powder%20metallurgy%20and%20metal%20ceramics&rft.au=Sleptsov,%20S.%20V.&rft.date=2015-11-01&rft.volume=54&rft.issue=7-8&rft.spage=471&rft.epage=481&rft.pages=471-481&rft.issn=1068-1302&rft.eissn=1573-9066&rft_id=info:doi/10.1007/s11106-015-9738-z&rft_dat=%3Cgale_cross%3EA442890444%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A442890444&rfr_iscdi=true |