Cocrystallization of Max-Phases in the Ti–Al–C System

The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder metallurgy and metal ceramics 2015-11, Vol.54 (7-8), p.471-481
Hauptverfasser: Sleptsov, S. V., Bondar, A. A., Witusiewicz, V. T., Hecht, U., Hallstedt, B., Petyukh, V. M., Dovbenko, O. I., Velikanova, T. Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 7-8
container_start_page 471
container_title Powder metallurgy and metal ceramics
container_volume 54
creator Sleptsov, S. V.
Bondar, A. A.
Witusiewicz, V. T.
Hecht, U.
Hallstedt, B.
Petyukh, V. M.
Dovbenko, O. I.
Velikanova, T. Ya
description The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti 41 . 5 Al 38 . 5 C 20 samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti 3 AlC 2 (N-phase of Ti 3 SiC 2 type), Ti 2 AlC (H, Cr 2 AlC type), and binary intermetallic TiAl 3 (ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.
doi_str_mv 10.1007/s11106-015-9738-z
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A442890444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A442890444</galeid><sourcerecordid>A442890444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-90389eaa669cad8a47a5c5f69ce83aa5141ca1fc3e17c65d26ffe2caefef07253</originalsourceid><addsrcrecordid>eNp9kF1KAzEQx4MoWKsH8G0vkJrZZLO7j2XxCyoK1ucwpJM2ZbsryQq2T97BG3oSU9ZnGZgv5jfD_Bm7BjEDIcqbCABCcwEFr0tZ8cMJm0BRSl4LrU9TLnTFQYr8nF3EuBUiUQomrG56G_ZxwLb1Bxx832W9y57wk79sMFLMfJcNG8qW_ufre94m12SvaZ52l-zMYRvp6i9O2dvd7bJ54Ivn-8dmvuBW1uWQ7suqJkSta4urClWJhS1cqqiSiAUosAjOSoLS6mKVa-cot0iOnCjzQk7ZbNy7xpaM71w_BLTJVrTztu_I-dSfK5VXtVBKJQBGwIY-xkDOvAe_w7A3IMxRLDOKZZJY5iiWOSQmH5mYZrs1BbPtP0KX_voH-gWUu27y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cocrystallization of Max-Phases in the Ti–Al–C System</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sleptsov, S. V. ; Bondar, A. A. ; Witusiewicz, V. T. ; Hecht, U. ; Hallstedt, B. ; Petyukh, V. M. ; Dovbenko, O. I. ; Velikanova, T. Ya</creator><creatorcontrib>Sleptsov, S. V. ; Bondar, A. A. ; Witusiewicz, V. T. ; Hecht, U. ; Hallstedt, B. ; Petyukh, V. M. ; Dovbenko, O. I. ; Velikanova, T. Ya</creatorcontrib><description>The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti 41 . 5 Al 38 . 5 C 20 samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti 3 AlC 2 (N-phase of Ti 3 SiC 2 type), Ti 2 AlC (H, Cr 2 AlC type), and binary intermetallic TiAl 3 (ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.</description><identifier>ISSN: 1068-1302</identifier><identifier>EISSN: 1573-9066</identifier><identifier>DOI: 10.1007/s11106-015-9738-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Analysis ; Annealing ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Glass ; Intermetallic compounds ; Materials Science ; Metallic Materials ; Natural Materials ; X-ray diffraction</subject><ispartof>Powder metallurgy and metal ceramics, 2015-11, Vol.54 (7-8), p.471-481</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-90389eaa669cad8a47a5c5f69ce83aa5141ca1fc3e17c65d26ffe2caefef07253</citedby><cites>FETCH-LOGICAL-c397t-90389eaa669cad8a47a5c5f69ce83aa5141ca1fc3e17c65d26ffe2caefef07253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11106-015-9738-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11106-015-9738-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sleptsov, S. V.</creatorcontrib><creatorcontrib>Bondar, A. A.</creatorcontrib><creatorcontrib>Witusiewicz, V. T.</creatorcontrib><creatorcontrib>Hecht, U.</creatorcontrib><creatorcontrib>Hallstedt, B.</creatorcontrib><creatorcontrib>Petyukh, V. M.</creatorcontrib><creatorcontrib>Dovbenko, O. I.</creatorcontrib><creatorcontrib>Velikanova, T. Ya</creatorcontrib><title>Cocrystallization of Max-Phases in the Ti–Al–C System</title><title>Powder metallurgy and metal ceramics</title><addtitle>Powder Metall Met Ceram</addtitle><description>The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti 41 . 5 Al 38 . 5 C 20 samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti 3 AlC 2 (N-phase of Ti 3 SiC 2 type), Ti 2 AlC (H, Cr 2 AlC type), and binary intermetallic TiAl 3 (ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Annealing</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Intermetallic compounds</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>X-ray diffraction</subject><issn>1068-1302</issn><issn>1573-9066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kF1KAzEQx4MoWKsH8G0vkJrZZLO7j2XxCyoK1ucwpJM2ZbsryQq2T97BG3oSU9ZnGZgv5jfD_Bm7BjEDIcqbCABCcwEFr0tZ8cMJm0BRSl4LrU9TLnTFQYr8nF3EuBUiUQomrG56G_ZxwLb1Bxx832W9y57wk79sMFLMfJcNG8qW_ufre94m12SvaZ52l-zMYRvp6i9O2dvd7bJ54Ivn-8dmvuBW1uWQ7suqJkSta4urClWJhS1cqqiSiAUosAjOSoLS6mKVa-cot0iOnCjzQk7ZbNy7xpaM71w_BLTJVrTztu_I-dSfK5VXtVBKJQBGwIY-xkDOvAe_w7A3IMxRLDOKZZJY5iiWOSQmH5mYZrs1BbPtP0KX_voH-gWUu27y</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Sleptsov, S. V.</creator><creator>Bondar, A. A.</creator><creator>Witusiewicz, V. T.</creator><creator>Hecht, U.</creator><creator>Hallstedt, B.</creator><creator>Petyukh, V. M.</creator><creator>Dovbenko, O. I.</creator><creator>Velikanova, T. Ya</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Cocrystallization of Max-Phases in the Ti–Al–C System</title><author>Sleptsov, S. V. ; Bondar, A. A. ; Witusiewicz, V. T. ; Hecht, U. ; Hallstedt, B. ; Petyukh, V. M. ; Dovbenko, O. I. ; Velikanova, T. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-90389eaa669cad8a47a5c5f69ce83aa5141ca1fc3e17c65d26ffe2caefef07253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Annealing</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Intermetallic compounds</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sleptsov, S. V.</creatorcontrib><creatorcontrib>Bondar, A. A.</creatorcontrib><creatorcontrib>Witusiewicz, V. T.</creatorcontrib><creatorcontrib>Hecht, U.</creatorcontrib><creatorcontrib>Hallstedt, B.</creatorcontrib><creatorcontrib>Petyukh, V. M.</creatorcontrib><creatorcontrib>Dovbenko, O. I.</creatorcontrib><creatorcontrib>Velikanova, T. Ya</creatorcontrib><collection>CrossRef</collection><jtitle>Powder metallurgy and metal ceramics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sleptsov, S. V.</au><au>Bondar, A. A.</au><au>Witusiewicz, V. T.</au><au>Hecht, U.</au><au>Hallstedt, B.</au><au>Petyukh, V. M.</au><au>Dovbenko, O. I.</au><au>Velikanova, T. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cocrystallization of Max-Phases in the Ti–Al–C System</atitle><jtitle>Powder metallurgy and metal ceramics</jtitle><stitle>Powder Metall Met Ceram</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>54</volume><issue>7-8</issue><spage>471</spage><epage>481</epage><pages>471-481</pages><issn>1068-1302</issn><eissn>1573-9066</eissn><abstract>The structure and phase transformations in the Ti–Al–C system were studied by X-ray diffraction, differential thermal analysis, and scanning electron microscopy, including energy-dispersive X-ray spectroscopy and electron backscatter diffraction on samples obtained by arc melting and annealing at high temperatures. The ternary system has a cocrystallization region for the two MAX-phases, N and H. The Ti 41 . 5 Al 38 . 5 C 20 samples contain three phases at all experimental temperatures (from 650 to 1660°C): Ti 3 AlC 2 (N-phase of Ti 3 SiC 2 type), Ti 2 AlC (H, Cr 2 AlC type), and binary intermetallic TiAl 3 (ε, its own crystal type). The morphology of the as-cast alloy and annealed samples (at temperatures above and below the solidus temperature, 1660 and 1250°C, respectively) shows that invariant solidification at 1405°C (solidus temperature) precedes the univariant simultaneous solidification of N- and H-phases, i.e. both MAX-phases separating from the melt.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11106-015-9738-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-1302
ispartof Powder metallurgy and metal ceramics, 2015-11, Vol.54 (7-8), p.471-481
issn 1068-1302
1573-9066
language eng
recordid cdi_gale_infotracacademiconefile_A442890444
source SpringerLink Journals - AutoHoldings
subjects Alloys
Analysis
Annealing
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Glass
Intermetallic compounds
Materials Science
Metallic Materials
Natural Materials
X-ray diffraction
title Cocrystallization of Max-Phases in the Ti–Al–C System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cocrystallization%20of%20Max-Phases%20in%20the%20Ti%E2%80%93Al%E2%80%93C%20System&rft.jtitle=Powder%20metallurgy%20and%20metal%20ceramics&rft.au=Sleptsov,%20S.%20V.&rft.date=2015-11-01&rft.volume=54&rft.issue=7-8&rft.spage=471&rft.epage=481&rft.pages=471-481&rft.issn=1068-1302&rft.eissn=1573-9066&rft_id=info:doi/10.1007/s11106-015-9738-z&rft_dat=%3Cgale_cross%3EA442890444%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A442890444&rfr_iscdi=true