Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations
Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an el...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2015-10, Vol.161 (2), p.365-403 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 403 |
---|---|
container_issue | 2 |
container_start_page | 365 |
container_title | Journal of statistical physics |
container_volume | 161 |
creator | Cirillo, Emilio N. M. Nardi, Francesca R. Sohier, Julien |
description | Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata. |
doi_str_mv | 10.1007/s10955-015-1334-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A438207564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A438207564</galeid><sourcerecordid>A438207564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-7de59418327a82642cef727a0a6b380e1dfebe01cae7369650a998c2c4ae1a0c3</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKsP4F1eYOskm-yPd2WtVagIUq_DNJ2tKdtsSbZI397Uei1zMcOZ-QbOYexewEQAlA9RQK11BkJnIs9VVlywkdClzOpC5JdsBCBlpkqhr9lNjFsAqKtajxi-0YBxwJXr3HDkbR_4nDwF7PjT0ePO2ci_3fDFPzAQXwb00Q2u9_GRz6LFfdLcjjj6NW9C2tgENr1v3eYQ8Pfwll212EW6--tj9vk8WzYv2eJ9_tpMF5lVCoasXJOulahyWWIlCyUttWWaAYtVXgGJdUsrAmGRyryoCw1Y15WVViEJBJuP2eT8d4MdGefbfghoU60pueg9tS7pU5VXEkpdqASIM2BDH2Og1uyD22E4GgHmFKo5h2pSqOYUqikSI89MTLd-Q8Fs-0Pwydc_0A-L53rO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations</title><source>Springer Nature - Complete Springer Journals</source><creator>Cirillo, Emilio N. M. ; Nardi, Francesca R. ; Sohier, Julien</creator><creatorcontrib>Cirillo, Emilio N. M. ; Nardi, Francesca R. ; Sohier, Julien</creatorcontrib><description>Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-015-1334-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Markov processes ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2015-10, Vol.161 (2), p.365-403</ispartof><rights>The Author(s) 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-7de59418327a82642cef727a0a6b380e1dfebe01cae7369650a998c2c4ae1a0c3</citedby><cites>FETCH-LOGICAL-c440t-7de59418327a82642cef727a0a6b380e1dfebe01cae7369650a998c2c4ae1a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-015-1334-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-015-1334-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Cirillo, Emilio N. M.</creatorcontrib><creatorcontrib>Nardi, Francesca R.</creatorcontrib><creatorcontrib>Sohier, Julien</creatorcontrib><title>Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.</description><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kN1KAzEQhYMoWKsP4F1eYOskm-yPd2WtVagIUq_DNJ2tKdtsSbZI397Uei1zMcOZ-QbOYexewEQAlA9RQK11BkJnIs9VVlywkdClzOpC5JdsBCBlpkqhr9lNjFsAqKtajxi-0YBxwJXr3HDkbR_4nDwF7PjT0ePO2ci_3fDFPzAQXwb00Q2u9_GRz6LFfdLcjjj6NW9C2tgENr1v3eYQ8Pfwll212EW6--tj9vk8WzYv2eJ9_tpMF5lVCoasXJOulahyWWIlCyUttWWaAYtVXgGJdUsrAmGRyryoCw1Y15WVViEJBJuP2eT8d4MdGefbfghoU60pueg9tS7pU5VXEkpdqASIM2BDH2Og1uyD22E4GgHmFKo5h2pSqOYUqikSI89MTLd-Q8Fs-0Pwydc_0A-L53rO</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Cirillo, Emilio N. M.</creator><creator>Nardi, Francesca R.</creator><creator>Sohier, Julien</creator><general>Springer US</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations</title><author>Cirillo, Emilio N. M. ; Nardi, Francesca R. ; Sohier, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-7de59418327a82642cef727a0a6b380e1dfebe01cae7369650a998c2c4ae1a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cirillo, Emilio N. M.</creatorcontrib><creatorcontrib>Nardi, Francesca R.</creatorcontrib><creatorcontrib>Sohier, Julien</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cirillo, Emilio N. M.</au><au>Nardi, Francesca R.</au><au>Sohier, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>161</volume><issue>2</issue><spage>365</spage><epage>403</epage><pages>365-403</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-015-1334-6</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2015-10, Vol.161 (2), p.365-403 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A438207564 |
source | Springer Nature - Complete Springer Journals |
subjects | Markov processes Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metastability%20for%20General%20Dynamics%20with%20Rare%20Transitions:%20Escape%20Time%20and%20Critical%20Configurations&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Cirillo,%20Emilio%20N.%20M.&rft.date=2015-10-01&rft.volume=161&rft.issue=2&rft.spage=365&rft.epage=403&rft.pages=365-403&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-015-1334-6&rft_dat=%3Cgale_cross%3EA438207564%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A438207564&rfr_iscdi=true |