Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations

Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2015-10, Vol.161 (2), p.365-403
Hauptverfasser: Cirillo, Emilio N. M., Nardi, Francesca R., Sohier, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 403
container_issue 2
container_start_page 365
container_title Journal of statistical physics
container_volume 161
creator Cirillo, Emilio N. M.
Nardi, Francesca R.
Sohier, Julien
description Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.
doi_str_mv 10.1007/s10955-015-1334-6
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A438207564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A438207564</galeid><sourcerecordid>A438207564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-7de59418327a82642cef727a0a6b380e1dfebe01cae7369650a998c2c4ae1a0c3</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWKsP4F1eYOskm-yPd2WtVagIUq_DNJ2tKdtsSbZI397Uei1zMcOZ-QbOYexewEQAlA9RQK11BkJnIs9VVlywkdClzOpC5JdsBCBlpkqhr9lNjFsAqKtajxi-0YBxwJXr3HDkbR_4nDwF7PjT0ePO2ci_3fDFPzAQXwb00Q2u9_GRz6LFfdLcjjj6NW9C2tgENr1v3eYQ8Pfwll212EW6--tj9vk8WzYv2eJ9_tpMF5lVCoasXJOulahyWWIlCyUttWWaAYtVXgGJdUsrAmGRyryoCw1Y15WVViEJBJuP2eT8d4MdGefbfghoU60pueg9tS7pU5VXEkpdqASIM2BDH2Og1uyD22E4GgHmFKo5h2pSqOYUqikSI89MTLd-Q8Fs-0Pwydc_0A-L53rO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations</title><source>Springer Nature - Complete Springer Journals</source><creator>Cirillo, Emilio N. M. ; Nardi, Francesca R. ; Sohier, Julien</creator><creatorcontrib>Cirillo, Emilio N. M. ; Nardi, Francesca R. ; Sohier, Julien</creatorcontrib><description>Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-015-1334-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Markov processes ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2015-10, Vol.161 (2), p.365-403</ispartof><rights>The Author(s) 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-7de59418327a82642cef727a0a6b380e1dfebe01cae7369650a998c2c4ae1a0c3</citedby><cites>FETCH-LOGICAL-c440t-7de59418327a82642cef727a0a6b380e1dfebe01cae7369650a998c2c4ae1a0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-015-1334-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-015-1334-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Cirillo, Emilio N. M.</creatorcontrib><creatorcontrib>Nardi, Francesca R.</creatorcontrib><creatorcontrib>Sohier, Julien</creatorcontrib><title>Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.</description><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kN1KAzEQhYMoWKsP4F1eYOskm-yPd2WtVagIUq_DNJ2tKdtsSbZI397Uei1zMcOZ-QbOYexewEQAlA9RQK11BkJnIs9VVlywkdClzOpC5JdsBCBlpkqhr9lNjFsAqKtajxi-0YBxwJXr3HDkbR_4nDwF7PjT0ePO2ci_3fDFPzAQXwb00Q2u9_GRz6LFfdLcjjj6NW9C2tgENr1v3eYQ8Pfwll212EW6--tj9vk8WzYv2eJ9_tpMF5lVCoasXJOulahyWWIlCyUttWWaAYtVXgGJdUsrAmGRyryoCw1Y15WVViEJBJuP2eT8d4MdGefbfghoU60pueg9tS7pU5VXEkpdqASIM2BDH2Og1uyD22E4GgHmFKo5h2pSqOYUqikSI89MTLd-Q8Fs-0Pwydc_0A-L53rO</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Cirillo, Emilio N. M.</creator><creator>Nardi, Francesca R.</creator><creator>Sohier, Julien</creator><general>Springer US</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations</title><author>Cirillo, Emilio N. M. ; Nardi, Francesca R. ; Sohier, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-7de59418327a82642cef727a0a6b380e1dfebe01cae7369650a998c2c4ae1a0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cirillo, Emilio N. M.</creatorcontrib><creatorcontrib>Nardi, Francesca R.</creatorcontrib><creatorcontrib>Sohier, Julien</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cirillo, Emilio N. M.</au><au>Nardi, Francesca R.</au><au>Sohier, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>161</volume><issue>2</issue><spage>365</spage><epage>403</epage><pages>365-403</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-015-1334-6</doi><tpages>39</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2015-10, Vol.161 (2), p.365-403
issn 0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A438207564
source Springer Nature - Complete Springer Journals
subjects Markov processes
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A52%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metastability%20for%20General%20Dynamics%20with%20Rare%20Transitions:%20Escape%20Time%20and%20Critical%20Configurations&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Cirillo,%20Emilio%20N.%20M.&rft.date=2015-10-01&rft.volume=161&rft.issue=2&rft.spage=365&rft.epage=403&rft.pages=365-403&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-015-1334-6&rft_dat=%3Cgale_cross%3EA438207564%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A438207564&rfr_iscdi=true