Estimation of Quantile Treatment Effects with Stata

In this article, we discuss the implementation of various estimators proposed to estimate quantile treatment effects. We distinguish four cases involving conditional and unconditional quantile treatment effects with either exogenous or endogenous treatment variables. The introduced ivqte command cov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Stata journal 2010-09, Vol.10 (3), p.423-457
Hauptverfasser: Fröolich, Markus, Melly, Blaise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 3
container_start_page 423
container_title The Stata journal
container_volume 10
creator Fröolich, Markus
Melly, Blaise
description In this article, we discuss the implementation of various estimators proposed to estimate quantile treatment effects. We distinguish four cases involving conditional and unconditional quantile treatment effects with either exogenous or endogenous treatment variables. The introduced ivqte command covers four different estimators: the classical quantile regression estimator of Koenker and Bassett (1978, Econometrica 46: 33–50) extended to heteroskedasticity consistent standard errors; the instrumental-variable quantile regression estimator of Abadie, Angrist, and Imbens (2002, Econometrica 70: 91–117); the estimator for unconditional quantile treatment effects proposed by Firpo (2007, Econometrica 75: 259–276); and the instrumental-variable estimator for unconditional quantile treatment effects proposed by Frölich and Melly (2008, IZA discussion paper 3288). The implemented instrumental-variable procedures estimate the causal effects for the subpopulation of compliers and are only well suited for binary instruments. ivqte also provides analytical standard errors and various options for nonparametric estimation. As a by-product, the locreg command implements local linear and local logit estimators for mixed data (continuous, ordered discrete, unordered discrete, and binary regressors).
doi_str_mv 10.1177/1536867X1001000309
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A410506327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A410506327</galeid><sourcerecordid>A410506327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-b10ac74f088c7e92f5f75b8f0544e883f7e9f19ae679a7841e903f3d1fdecfd73</originalsourceid><addsrcrecordid>eNplUF1LxDAQDKLgefoHfOof6Llp0iZ5PI6qBwcinuBbyKW7WumHJBHx39ty-iS7sMOws-wMY9ccVpwrdcNLUelKvXCAqUGAOWGLmcy1EvL0D08b5-wixncAqXhRLJioY2p7l9pxyEbKHj_dkNoOs31Al3ocUlYToU8x-2rTW_aUXHKX7IxcF_Hqdy7Z822939znu4e77Wa9y71QJuUHDs4rSaC1V2gKKkmVB01QSolaC5pI4sZhpYxTWnI0IEg0nBr01CixZKvj3VfXoW0HGlNwfqoG-9aPA9L0qV1LDiVUopgFxVHgwxhjQLIfYTIXvi0HO-dk_-ckfgCvoVpJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of Quantile Treatment Effects with Stata</title><source>SAGE Complete A-Z List</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Fröolich, Markus ; Melly, Blaise</creator><creatorcontrib>Fröolich, Markus ; Melly, Blaise</creatorcontrib><description>In this article, we discuss the implementation of various estimators proposed to estimate quantile treatment effects. We distinguish four cases involving conditional and unconditional quantile treatment effects with either exogenous or endogenous treatment variables. The introduced ivqte command covers four different estimators: the classical quantile regression estimator of Koenker and Bassett (1978, Econometrica 46: 33–50) extended to heteroskedasticity consistent standard errors; the instrumental-variable quantile regression estimator of Abadie, Angrist, and Imbens (2002, Econometrica 70: 91–117); the estimator for unconditional quantile treatment effects proposed by Firpo (2007, Econometrica 75: 259–276); and the instrumental-variable estimator for unconditional quantile treatment effects proposed by Frölich and Melly (2008, IZA discussion paper 3288). The implemented instrumental-variable procedures estimate the causal effects for the subpopulation of compliers and are only well suited for binary instruments. ivqte also provides analytical standard errors and various options for nonparametric estimation. As a by-product, the locreg command implements local linear and local logit estimators for mixed data (continuous, ordered discrete, unordered discrete, and binary regressors).</description><identifier>ISSN: 1536-867X</identifier><identifier>EISSN: 1536-8734</identifier><identifier>DOI: 10.1177/1536867X1001000309</identifier><language>eng</language><publisher>Sage Publications, Inc</publisher><subject>Algorithms ; Mathematical research ; Regression analysis</subject><ispartof>The Stata journal, 2010-09, Vol.10 (3), p.423-457</ispartof><rights>COPYRIGHT 2010 Sage Publications, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-b10ac74f088c7e92f5f75b8f0544e883f7e9f19ae679a7841e903f3d1fdecfd73</citedby><cites>FETCH-LOGICAL-c379t-b10ac74f088c7e92f5f75b8f0544e883f7e9f19ae679a7841e903f3d1fdecfd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fröolich, Markus</creatorcontrib><creatorcontrib>Melly, Blaise</creatorcontrib><title>Estimation of Quantile Treatment Effects with Stata</title><title>The Stata journal</title><description>In this article, we discuss the implementation of various estimators proposed to estimate quantile treatment effects. We distinguish four cases involving conditional and unconditional quantile treatment effects with either exogenous or endogenous treatment variables. The introduced ivqte command covers four different estimators: the classical quantile regression estimator of Koenker and Bassett (1978, Econometrica 46: 33–50) extended to heteroskedasticity consistent standard errors; the instrumental-variable quantile regression estimator of Abadie, Angrist, and Imbens (2002, Econometrica 70: 91–117); the estimator for unconditional quantile treatment effects proposed by Firpo (2007, Econometrica 75: 259–276); and the instrumental-variable estimator for unconditional quantile treatment effects proposed by Frölich and Melly (2008, IZA discussion paper 3288). The implemented instrumental-variable procedures estimate the causal effects for the subpopulation of compliers and are only well suited for binary instruments. ivqte also provides analytical standard errors and various options for nonparametric estimation. As a by-product, the locreg command implements local linear and local logit estimators for mixed data (continuous, ordered discrete, unordered discrete, and binary regressors).</description><subject>Algorithms</subject><subject>Mathematical research</subject><subject>Regression analysis</subject><issn>1536-867X</issn><issn>1536-8734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNplUF1LxDAQDKLgefoHfOof6Llp0iZ5PI6qBwcinuBbyKW7WumHJBHx39ty-iS7sMOws-wMY9ccVpwrdcNLUelKvXCAqUGAOWGLmcy1EvL0D08b5-wixncAqXhRLJioY2p7l9pxyEbKHj_dkNoOs31Al3ocUlYToU8x-2rTW_aUXHKX7IxcF_Hqdy7Z822939znu4e77Wa9y71QJuUHDs4rSaC1V2gKKkmVB01QSolaC5pI4sZhpYxTWnI0IEg0nBr01CixZKvj3VfXoW0HGlNwfqoG-9aPA9L0qV1LDiVUopgFxVHgwxhjQLIfYTIXvi0HO-dk_-ckfgCvoVpJ</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Fröolich, Markus</creator><creator>Melly, Blaise</creator><general>Sage Publications, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100901</creationdate><title>Estimation of Quantile Treatment Effects with Stata</title><author>Fröolich, Markus ; Melly, Blaise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-b10ac74f088c7e92f5f75b8f0544e883f7e9f19ae679a7841e903f3d1fdecfd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Mathematical research</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fröolich, Markus</creatorcontrib><creatorcontrib>Melly, Blaise</creatorcontrib><collection>CrossRef</collection><jtitle>The Stata journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fröolich, Markus</au><au>Melly, Blaise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Quantile Treatment Effects with Stata</atitle><jtitle>The Stata journal</jtitle><date>2010-09-01</date><risdate>2010</risdate><volume>10</volume><issue>3</issue><spage>423</spage><epage>457</epage><pages>423-457</pages><issn>1536-867X</issn><eissn>1536-8734</eissn><abstract>In this article, we discuss the implementation of various estimators proposed to estimate quantile treatment effects. We distinguish four cases involving conditional and unconditional quantile treatment effects with either exogenous or endogenous treatment variables. The introduced ivqte command covers four different estimators: the classical quantile regression estimator of Koenker and Bassett (1978, Econometrica 46: 33–50) extended to heteroskedasticity consistent standard errors; the instrumental-variable quantile regression estimator of Abadie, Angrist, and Imbens (2002, Econometrica 70: 91–117); the estimator for unconditional quantile treatment effects proposed by Firpo (2007, Econometrica 75: 259–276); and the instrumental-variable estimator for unconditional quantile treatment effects proposed by Frölich and Melly (2008, IZA discussion paper 3288). The implemented instrumental-variable procedures estimate the causal effects for the subpopulation of compliers and are only well suited for binary instruments. ivqte also provides analytical standard errors and various options for nonparametric estimation. As a by-product, the locreg command implements local linear and local logit estimators for mixed data (continuous, ordered discrete, unordered discrete, and binary regressors).</abstract><pub>Sage Publications, Inc</pub><doi>10.1177/1536867X1001000309</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-867X
ispartof The Stata journal, 2010-09, Vol.10 (3), p.423-457
issn 1536-867X
1536-8734
language eng
recordid cdi_gale_infotracacademiconefile_A410506327
source SAGE Complete A-Z List; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Mathematical research
Regression analysis
title Estimation of Quantile Treatment Effects with Stata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Quantile%20Treatment%20Effects%20with%20Stata&rft.jtitle=The%20Stata%20journal&rft.au=Fr%C3%B6olich,%20Markus&rft.date=2010-09-01&rft.volume=10&rft.issue=3&rft.spage=423&rft.epage=457&rft.pages=423-457&rft.issn=1536-867X&rft.eissn=1536-8734&rft_id=info:doi/10.1177/1536867X1001000309&rft_dat=%3Cgale_cross%3EA410506327%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A410506327&rfr_iscdi=true