Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation
We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums k n = Σ ρ 1 − 1 − 1 ρ n over zeros of the Riemann xi-function and the derivatives λ n ≡ 1 n − 1 ! d n d z n z n − 1 ln ξ z z = 1 , where n = 1 , 2 , 3 , … , are nonnegative if and only if the Riemann...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2014-08, Vol.66 (3), p.415-431 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 3 |
container_start_page | 415 |
container_title | Ukrainian mathematical journal |
container_volume | 66 |
creator | Sekatskii, S. K. |
description | We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums
k
n
=
Σ
ρ
1
−
1
−
1
ρ
n
over zeros of the Riemann xi-function and the derivatives
λ
n
≡
1
n
−
1
!
d
n
d
z
n
z
n
−
1
ln
ξ
z
z
=
1
,
where
n
=
1
,
2
,
3
,
…
,
are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an
arbitrary
real point
a
, except
a
= 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums
k
n
,
a
=
Σ
ρ
1
−
ρ
−
a
ρ
+
a
−
1
n
for any real
a
such that
a
1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines. |
doi_str_mv | 10.1007/s11253-014-0940-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A389646918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A389646918</galeid><sourcerecordid>A389646918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-49213bc39c6d642c6a8ec07a226ca84a560695bf92806da583d762420e8a5c073</originalsourceid><addsrcrecordid>eNp9kEFOAyEUhonRxFo9gDsuQAVmYGBZG61NJnFT14QyTEvTYRrAGF31Dq56vZ5EmnHhyrCA_HzfS94PwD3BE4Jx9RAJoaxAmJQIyxIjeQFGhFUFkkXFL8EI45IgJiW7BjcxbjHOlqhGwM-tt0Hv3Jdt4GPfrZwN7nT4rvVaB6fj6XCEy43tg-2g9g38i9cZPEY4Cy5lqffww6UNdCnCaY42nU3OwIXPn_tgk04ZuQVXrd5Fe_d7j8Hb89Ny9oLq1_liNq2RKWSVUCkpKVb5bXjDS2q4FtbgSlPKjRalZhxzyVatpALzRjNRNBWnJcVWaJbBYgwmw9y13lnlfNunoE0-je2c6b1tXc6nhZC85JKILJBBMKGPMdhW7YPrdPhUBKtzw2poWOWG1blhJbNDBydm1q9tUNv-Pfi81z_SD3q1gf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sekatskii, S. K.</creator><creatorcontrib>Sekatskii, S. K.</creatorcontrib><description>We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums
k
n
=
Σ
ρ
1
−
1
−
1
ρ
n
over zeros of the Riemann xi-function and the derivatives
λ
n
≡
1
n
−
1
!
d
n
d
z
n
z
n
−
1
ln
ξ
z
z
=
1
,
where
n
=
1
,
2
,
3
,
…
,
are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an
arbitrary
real point
a
, except
a
= 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums
k
n
,
a
=
Σ
ρ
1
−
ρ
−
a
ρ
+
a
−
1
n
for any real
a
such that
a
< 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with
a
> 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-014-0940-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2014-08, Vol.66 (3), p.415-431</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-49213bc39c6d642c6a8ec07a226ca84a560695bf92806da583d762420e8a5c073</citedby><cites>FETCH-LOGICAL-c397t-49213bc39c6d642c6a8ec07a226ca84a560695bf92806da583d762420e8a5c073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-014-0940-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-014-0940-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Sekatskii, S. K.</creatorcontrib><title>Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums
k
n
=
Σ
ρ
1
−
1
−
1
ρ
n
over zeros of the Riemann xi-function and the derivatives
λ
n
≡
1
n
−
1
!
d
n
d
z
n
z
n
−
1
ln
ξ
z
z
=
1
,
where
n
=
1
,
2
,
3
,
…
,
are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an
arbitrary
real point
a
, except
a
= 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums
k
n
,
a
=
Σ
ρ
1
−
ρ
−
a
ρ
+
a
−
1
n
for any real
a
such that
a
< 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with
a
> 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOAyEUhonRxFo9gDsuQAVmYGBZG61NJnFT14QyTEvTYRrAGF31Dq56vZ5EmnHhyrCA_HzfS94PwD3BE4Jx9RAJoaxAmJQIyxIjeQFGhFUFkkXFL8EI45IgJiW7BjcxbjHOlqhGwM-tt0Hv3Jdt4GPfrZwN7nT4rvVaB6fj6XCEy43tg-2g9g38i9cZPEY4Cy5lqffww6UNdCnCaY42nU3OwIXPn_tgk04ZuQVXrd5Fe_d7j8Hb89Ny9oLq1_liNq2RKWSVUCkpKVb5bXjDS2q4FtbgSlPKjRalZhxzyVatpALzRjNRNBWnJcVWaJbBYgwmw9y13lnlfNunoE0-je2c6b1tXc6nhZC85JKILJBBMKGPMdhW7YPrdPhUBKtzw2poWOWG1blhJbNDBydm1q9tUNv-Pfi81z_SD3q1gf0</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Sekatskii, S. K.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation</title><author>Sekatskii, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-49213bc39c6d642c6a8ec07a226ca84a560695bf92806da583d762420e8a5c073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekatskii, S. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekatskii, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>66</volume><issue>3</issue><spage>415</spage><epage>431</epage><pages>415-431</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums
k
n
=
Σ
ρ
1
−
1
−
1
ρ
n
over zeros of the Riemann xi-function and the derivatives
λ
n
≡
1
n
−
1
!
d
n
d
z
n
z
n
−
1
ln
ξ
z
z
=
1
,
where
n
=
1
,
2
,
3
,
…
,
are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an
arbitrary
real point
a
, except
a
= 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums
k
n
,
a
=
Σ
ρ
1
−
ρ
−
a
ρ
+
a
−
1
n
for any real
a
such that
a
< 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with
a
> 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11253-014-0940-9</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2014-08, Vol.66 (3), p.415-431 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A389646918 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Applications of Mathematics Geometry Mathematics Mathematics and Statistics Statistics |
title | Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Bombieri%E2%80%93Lagarias%E2%80%99%20Theorem%20and%20Generalized%20Li%E2%80%99s%20Criterion%20with%20its%20Arithmetic%20Interpretation&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Sekatskii,%20S.%20K.&rft.date=2014-08-01&rft.volume=66&rft.issue=3&rft.spage=415&rft.epage=431&rft.pages=415-431&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-014-0940-9&rft_dat=%3Cgale_cross%3EA389646918%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A389646918&rfr_iscdi=true |