Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation

We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums k n = Σ ρ 1 − 1 − 1 ρ n over zeros of the Riemann xi-function and the derivatives λ n ≡ 1 n − 1 ! d n d z n z n − 1 ln ξ z z = 1 , where n = 1 , 2 , 3 , … , are nonnegative if and only if the Riemann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2014-08, Vol.66 (3), p.415-431
1. Verfasser: Sekatskii, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 3
container_start_page 415
container_title Ukrainian mathematical journal
container_volume 66
creator Sekatskii, S. K.
description We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums k n = Σ ρ 1 − 1 − 1 ρ n over zeros of the Riemann xi-function and the derivatives λ n ≡ 1 n − 1 ! d n d z n z n − 1 ln ξ z z = 1 , where n = 1 , 2 , 3 , … , are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an arbitrary real point a , except a  = 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums k n , a = Σ ρ 1 − ρ − a ρ + a − 1 n for any real a such that a   1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.
doi_str_mv 10.1007/s11253-014-0940-9
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A389646918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A389646918</galeid><sourcerecordid>A389646918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-49213bc39c6d642c6a8ec07a226ca84a560695bf92806da583d762420e8a5c073</originalsourceid><addsrcrecordid>eNp9kEFOAyEUhonRxFo9gDsuQAVmYGBZG61NJnFT14QyTEvTYRrAGF31Dq56vZ5EmnHhyrCA_HzfS94PwD3BE4Jx9RAJoaxAmJQIyxIjeQFGhFUFkkXFL8EI45IgJiW7BjcxbjHOlqhGwM-tt0Hv3Jdt4GPfrZwN7nT4rvVaB6fj6XCEy43tg-2g9g38i9cZPEY4Cy5lqffww6UNdCnCaY42nU3OwIXPn_tgk04ZuQVXrd5Fe_d7j8Hb89Ny9oLq1_liNq2RKWSVUCkpKVb5bXjDS2q4FtbgSlPKjRalZhxzyVatpALzRjNRNBWnJcVWaJbBYgwmw9y13lnlfNunoE0-je2c6b1tXc6nhZC85JKILJBBMKGPMdhW7YPrdPhUBKtzw2poWOWG1blhJbNDBydm1q9tUNv-Pfi81z_SD3q1gf0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sekatskii, S. K.</creator><creatorcontrib>Sekatskii, S. K.</creatorcontrib><description>We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums k n = Σ ρ 1 − 1 − 1 ρ n over zeros of the Riemann xi-function and the derivatives λ n ≡ 1 n − 1 ! d n d z n z n − 1 ln ξ z z = 1 , where n = 1 , 2 , 3 , … , are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an arbitrary real point a , except a  = 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums k n , a = Σ ρ 1 − ρ − a ρ + a − 1 n for any real a such that a  &lt; 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with a  &gt; 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-014-0940-9</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2014-08, Vol.66 (3), p.415-431</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-49213bc39c6d642c6a8ec07a226ca84a560695bf92806da583d762420e8a5c073</citedby><cites>FETCH-LOGICAL-c397t-49213bc39c6d642c6a8ec07a226ca84a560695bf92806da583d762420e8a5c073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-014-0940-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-014-0940-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Sekatskii, S. K.</creatorcontrib><title>Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums k n = Σ ρ 1 − 1 − 1 ρ n over zeros of the Riemann xi-function and the derivatives λ n ≡ 1 n − 1 ! d n d z n z n − 1 ln ξ z z = 1 , where n = 1 , 2 , 3 , … , are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an arbitrary real point a , except a  = 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums k n , a = Σ ρ 1 − ρ − a ρ + a − 1 n for any real a such that a  &lt; 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with a  &gt; 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOAyEUhonRxFo9gDsuQAVmYGBZG61NJnFT14QyTEvTYRrAGF31Dq56vZ5EmnHhyrCA_HzfS94PwD3BE4Jx9RAJoaxAmJQIyxIjeQFGhFUFkkXFL8EI45IgJiW7BjcxbjHOlqhGwM-tt0Hv3Jdt4GPfrZwN7nT4rvVaB6fj6XCEy43tg-2g9g38i9cZPEY4Cy5lqffww6UNdCnCaY42nU3OwIXPn_tgk04ZuQVXrd5Fe_d7j8Hb89Ny9oLq1_liNq2RKWSVUCkpKVb5bXjDS2q4FtbgSlPKjRalZhxzyVatpALzRjNRNBWnJcVWaJbBYgwmw9y13lnlfNunoE0-je2c6b1tXc6nhZC85JKILJBBMKGPMdhW7YPrdPhUBKtzw2poWOWG1blhJbNDBydm1q9tUNv-Pfi81z_SD3q1gf0</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Sekatskii, S. K.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140801</creationdate><title>Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation</title><author>Sekatskii, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-49213bc39c6d642c6a8ec07a226ca84a560695bf92806da583d762420e8a5c073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekatskii, S. K.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekatskii, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>66</volume><issue>3</issue><spage>415</spage><epage>431</epage><pages>415-431</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums k n = Σ ρ 1 − 1 − 1 ρ n over zeros of the Riemann xi-function and the derivatives λ n ≡ 1 n − 1 ! d n d z n z n − 1 ln ξ z z = 1 , where n = 1 , 2 , 3 , … , are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an arbitrary real point a , except a  = 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums k n , a = Σ ρ 1 − ρ − a ρ + a − 1 n for any real a such that a  &lt; 1/2 are nonnegative if and only if the Riemann hypothesis is true (correspondingly, the same derivatives with a  &gt; 1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11253-014-0940-9</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2014-08, Vol.66 (3), p.415-431
issn 0041-5995
1573-9376
language eng
recordid cdi_gale_infotracacademiconefile_A389646918
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Statistics
title Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A10%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Bombieri%E2%80%93Lagarias%E2%80%99%20Theorem%20and%20Generalized%20Li%E2%80%99s%20Criterion%20with%20its%20Arithmetic%20Interpretation&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Sekatskii,%20S.%20K.&rft.date=2014-08-01&rft.volume=66&rft.issue=3&rft.spage=415&rft.epage=431&rft.pages=415-431&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-014-0940-9&rft_dat=%3Cgale_cross%3EA389646918%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A389646918&rfr_iscdi=true