Generalized Bombieri–Lagarias’ Theorem and Generalized Li’s Criterion with its Arithmetic Interpretation

We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums k n = Σ ρ 1 − 1 − 1 ρ n over zeros of the Riemann xi-function and the derivatives λ n ≡ 1 n − 1 ! d n d z n z n − 1 ln ξ z z = 1 , where n = 1 , 2 , 3 , … , are nonnegative if and only if the Riemann...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2014-08, Vol.66 (3), p.415-431
1. Verfasser: Sekatskii, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that Li’s criterion equivalent to the Riemann hypothesis, i.e., the statement that the sums k n = Σ ρ 1 − 1 − 1 ρ n over zeros of the Riemann xi-function and the derivatives λ n ≡ 1 n − 1 ! d n d z n z n − 1 ln ξ z z = 1 , where n = 1 , 2 , 3 , … , are nonnegative if and only if the Riemann hypothesis is true, can be generalized and the nonnegativity of certain derivatives of the Riemann xi-function estimated at an arbitrary real point a , except a  = 1/2, can be used as a criterion equivalent to the Riemann hypothesis. Namely, we demonstrate that the sums k n , a = Σ ρ 1 − ρ − a ρ + a − 1 n for any real a such that a   1/2 should be nonpositive). The arithmetic interpretation of the generalized Li’s criterion is given. Similarly to Li’s criterion, the theorem of Bombieri and Lagarias applied to certain multisets of complex numbers is also generalized along the same lines.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-014-0940-9