Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application
Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2010-03, Vol.15 (1), p.66-82 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 82 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | Journal of agricultural, biological, and environmental statistics |
container_volume | 15 |
creator | Giraldo, R Delicado, P Mateu, J |
description | Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated curves. First, a smoothing process is applied to the curves by expanding the curves and the functional parameters in terms of a set of basis functions. The number of basis functions is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as a pointwise linear combination of the smoothed data. The prediction problem is solved by estimating a linear model of coregionalization to set the spatial dependence among the fitted coefficients. We extend an optimization criterion used in multivariable geostatistics to the functional context. The method is illustrated by smoothing and predicting temperature curves measured at 35 Canadian weather stations. |
doi_str_mv | 10.1007/s13253-009-0012-z |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A382805949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382805949</galeid><jstor_id>20778451</jstor_id><sourcerecordid>A382805949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-3c0c5b741e168e5d0416469897fafb330ff5cab8fac440b6b1365dc9489663ac3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRBIlJYfwAGRCwcOae3YThxuq6UtVSuB2JarNfHakVdZO7KdCvrrO0tQUS_IsmY078PyvKJ4R8kpJaQ9S5TVglWEdHhpXT28KI6oYG1VNx17iT2RomopbV8Xb1LaIYc1pD4qhnXw2fk5zKm8dXtT_YT42_mhvI5uOFQbYrmZIDsYy-_RbJ3OLvgy2PJi9n96BL5Ahs_lypfn_t7F4PfGZxyvpml0Gg6kk-KVhTGZt3_rcXF3cX67_lrdfLu8Wq9uKi14kyumiRZ9y6mhjTRiSzhteNPJrrVge8aItUJDLy1ozknf9PgNsdUdl13TMNDsuDhdfAcYjXLehhxB49mavdPBG-twvmKylkR0vEPBp2cC5GTzKw8wp6SuNj-ec-nC1TGkFI1VU3R7XJiiRB1iUEsMCmNQhxjUA2o-LpoJkobRRvDapSdhzRinNZPIqxdeQsgPJqpdmCMuN_3X_P0i2qUc4j9T0raSC4r4hwW3EBQMER--29SEcoJ-QrSSPQLi3aqR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application</title><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Giraldo, R ; Delicado, P ; Mateu, J</creator><creatorcontrib>Giraldo, R ; Delicado, P ; Mateu, J</creatorcontrib><description>Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated curves. First, a smoothing process is applied to the curves by expanding the curves and the functional parameters in terms of a set of basis functions. The number of basis functions is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as a pointwise linear combination of the smoothed data. The prediction problem is solved by estimating a linear model of coregionalization to set the spatial dependence among the fitted coefficients. We extend an optimization criterion used in multivariable geostatistics to the functional context. The method is illustrated by smoothing and predicting temperature curves measured at 35 Canadian weather stations.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-009-0012-z</identifier><language>eng</language><publisher>New York: International Biometric Society</publisher><subject>Agriculture ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Biometrics, statistics, experimental designs, modeling, agricultural computer applications ; Biostatistics ; Climate models ; Data analysis ; Data smoothing ; Datasets ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; Geostatistics ; Health Sciences ; Kriging ; Mathematical functions ; Mathematical independent variables ; Mathematics and Statistics ; Medicine ; Modeling ; Monitoring/Environmental Analysis ; prediction ; Statistical variance ; Statistics ; Statistics for Life Sciences ; temperature ; weather ; weather stations</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2010-03, Vol.15 (1), p.66-82</ispartof><rights>2010 International Biometric Society</rights><rights>International Biometric Society 2009</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-3c0c5b741e168e5d0416469897fafb330ff5cab8fac440b6b1365dc9489663ac3</citedby><cites>FETCH-LOGICAL-c546t-3c0c5b741e168e5d0416469897fafb330ff5cab8fac440b6b1365dc9489663ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20778451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20778451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,41467,42536,51297,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23341238$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Giraldo, R</creatorcontrib><creatorcontrib>Delicado, P</creatorcontrib><creatorcontrib>Mateu, J</creatorcontrib><title>Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated curves. First, a smoothing process is applied to the curves by expanding the curves and the functional parameters in terms of a set of basis functions. The number of basis functions is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as a pointwise linear combination of the smoothed data. The prediction problem is solved by estimating a linear model of coregionalization to set the spatial dependence among the fitted coefficients. We extend an optimization criterion used in multivariable geostatistics to the functional context. The method is illustrated by smoothing and predicting temperature curves measured at 35 Canadian weather stations.</description><subject>Agriculture</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</subject><subject>Biostatistics</subject><subject>Climate models</subject><subject>Data analysis</subject><subject>Data smoothing</subject><subject>Datasets</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>Geostatistics</subject><subject>Health Sciences</subject><subject>Kriging</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Modeling</subject><subject>Monitoring/Environmental Analysis</subject><subject>prediction</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><subject>temperature</subject><subject>weather</subject><subject>weather stations</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQjRBIlJYfwAGRCwcOae3YThxuq6UtVSuB2JarNfHakVdZO7KdCvrrO0tQUS_IsmY078PyvKJ4R8kpJaQ9S5TVglWEdHhpXT28KI6oYG1VNx17iT2RomopbV8Xb1LaIYc1pD4qhnXw2fk5zKm8dXtT_YT42_mhvI5uOFQbYrmZIDsYy-_RbJ3OLvgy2PJi9n96BL5Ahs_lypfn_t7F4PfGZxyvpml0Gg6kk-KVhTGZt3_rcXF3cX67_lrdfLu8Wq9uKi14kyumiRZ9y6mhjTRiSzhteNPJrrVge8aItUJDLy1ozknf9PgNsdUdl13TMNDsuDhdfAcYjXLehhxB49mavdPBG-twvmKylkR0vEPBp2cC5GTzKw8wp6SuNj-ec-nC1TGkFI1VU3R7XJiiRB1iUEsMCmNQhxjUA2o-LpoJkobRRvDapSdhzRinNZPIqxdeQsgPJqpdmCMuN_3X_P0i2qUc4j9T0raSC4r4hwW3EBQMER--29SEcoJ-QrSSPQLi3aqR</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Giraldo, R</creator><creator>Delicado, P</creator><creator>Mateu, J</creator><general>International Biometric Society</general><general>Springer-Verlag</general><general>American Statistical Association</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20100301</creationdate><title>Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application</title><author>Giraldo, R ; Delicado, P ; Mateu, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-3c0c5b741e168e5d0416469897fafb330ff5cab8fac440b6b1365dc9489663ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agriculture</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</topic><topic>Biostatistics</topic><topic>Climate models</topic><topic>Data analysis</topic><topic>Data smoothing</topic><topic>Datasets</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>Geostatistics</topic><topic>Health Sciences</topic><topic>Kriging</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Modeling</topic><topic>Monitoring/Environmental Analysis</topic><topic>prediction</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><topic>temperature</topic><topic>weather</topic><topic>weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giraldo, R</creatorcontrib><creatorcontrib>Delicado, P</creatorcontrib><creatorcontrib>Mateu, J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giraldo, R</au><au>Delicado, P</au><au>Mateu, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>15</volume><issue>1</issue><spage>66</spage><epage>82</epage><pages>66-82</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated curves. First, a smoothing process is applied to the curves by expanding the curves and the functional parameters in terms of a set of basis functions. The number of basis functions is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as a pointwise linear combination of the smoothed data. The prediction problem is solved by estimating a linear model of coregionalization to set the spatial dependence among the fitted coefficients. We extend an optimization criterion used in multivariable geostatistics to the functional context. The method is illustrated by smoothing and predicting temperature curves measured at 35 Canadian weather stations.</abstract><cop>New York</cop><pub>International Biometric Society</pub><doi>10.1007/s13253-009-0012-z</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-7117 |
ispartof | Journal of agricultural, biological, and environmental statistics, 2010-03, Vol.15 (1), p.66-82 |
issn | 1085-7117 1537-2693 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A382805949 |
source | JSTOR Mathematics & Statistics; Jstor Complete Legacy; Springer Nature - Complete Springer Journals |
subjects | Agriculture Agronomy. Soil science and plant productions Biological and medical sciences Biometrics, statistics, experimental designs, modeling, agricultural computer applications Biostatistics Climate models Data analysis Data smoothing Datasets Fundamental and applied biological sciences. Psychology Generalities. Biometrics, experimentation. Remote sensing Geostatistics Health Sciences Kriging Mathematical functions Mathematical independent variables Mathematics and Statistics Medicine Modeling Monitoring/Environmental Analysis prediction Statistical variance Statistics Statistics for Life Sciences temperature weather weather stations |
title | Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Time-Varying%20Kriging%20for%20Spatial%20Prediction%20of%20Functional%20Data:%20An%20Environmental%20Application&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Giraldo,%20R&rft.date=2010-03-01&rft.volume=15&rft.issue=1&rft.spage=66&rft.epage=82&rft.pages=66-82&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-009-0012-z&rft_dat=%3Cgale_cross%3EA382805949%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A382805949&rft_jstor_id=20778451&rfr_iscdi=true |