Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application

Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2010-03, Vol.15 (1), p.66-82
Hauptverfasser: Giraldo, R, Delicado, P, Mateu, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 66
container_title Journal of agricultural, biological, and environmental statistics
container_volume 15
creator Giraldo, R
Delicado, P
Mateu, J
description Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated curves. First, a smoothing process is applied to the curves by expanding the curves and the functional parameters in terms of a set of basis functions. The number of basis functions is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as a pointwise linear combination of the smoothed data. The prediction problem is solved by estimating a linear model of coregionalization to set the spatial dependence among the fitted coefficients. We extend an optimization criterion used in multivariable geostatistics to the functional context. The method is illustrated by smoothing and predicting temperature curves measured at 35 Canadian weather stations.
doi_str_mv 10.1007/s13253-009-0012-z
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A382805949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A382805949</galeid><jstor_id>20778451</jstor_id><sourcerecordid>A382805949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-3c0c5b741e168e5d0416469897fafb330ff5cab8fac440b6b1365dc9489663ac3</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRBIlJYfwAGRCwcOae3YThxuq6UtVSuB2JarNfHakVdZO7KdCvrrO0tQUS_IsmY078PyvKJ4R8kpJaQ9S5TVglWEdHhpXT28KI6oYG1VNx17iT2RomopbV8Xb1LaIYc1pD4qhnXw2fk5zKm8dXtT_YT42_mhvI5uOFQbYrmZIDsYy-_RbJ3OLvgy2PJi9n96BL5Ahs_lypfn_t7F4PfGZxyvpml0Gg6kk-KVhTGZt3_rcXF3cX67_lrdfLu8Wq9uKi14kyumiRZ9y6mhjTRiSzhteNPJrrVge8aItUJDLy1ozknf9PgNsdUdl13TMNDsuDhdfAcYjXLehhxB49mavdPBG-twvmKylkR0vEPBp2cC5GTzKw8wp6SuNj-ec-nC1TGkFI1VU3R7XJiiRB1iUEsMCmNQhxjUA2o-LpoJkobRRvDapSdhzRinNZPIqxdeQsgPJqpdmCMuN_3X_P0i2qUc4j9T0raSC4r4hwW3EBQMER--29SEcoJ-QrSSPQLi3aqR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Springer Nature - Complete Springer Journals</source><creator>Giraldo, R ; Delicado, P ; Mateu, J</creator><creatorcontrib>Giraldo, R ; Delicado, P ; Mateu, J</creatorcontrib><description>Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated curves. First, a smoothing process is applied to the curves by expanding the curves and the functional parameters in terms of a set of basis functions. The number of basis functions is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as a pointwise linear combination of the smoothed data. The prediction problem is solved by estimating a linear model of coregionalization to set the spatial dependence among the fitted coefficients. We extend an optimization criterion used in multivariable geostatistics to the functional context. The method is illustrated by smoothing and predicting temperature curves measured at 35 Canadian weather stations.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-009-0012-z</identifier><language>eng</language><publisher>New York: International Biometric Society</publisher><subject>Agriculture ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Biometrics, statistics, experimental designs, modeling, agricultural computer applications ; Biostatistics ; Climate models ; Data analysis ; Data smoothing ; Datasets ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; Geostatistics ; Health Sciences ; Kriging ; Mathematical functions ; Mathematical independent variables ; Mathematics and Statistics ; Medicine ; Modeling ; Monitoring/Environmental Analysis ; prediction ; Statistical variance ; Statistics ; Statistics for Life Sciences ; temperature ; weather ; weather stations</subject><ispartof>Journal of agricultural, biological, and environmental statistics, 2010-03, Vol.15 (1), p.66-82</ispartof><rights>2010 International Biometric Society</rights><rights>International Biometric Society 2009</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-3c0c5b741e168e5d0416469897fafb330ff5cab8fac440b6b1365dc9489663ac3</citedby><cites>FETCH-LOGICAL-c546t-3c0c5b741e168e5d0416469897fafb330ff5cab8fac440b6b1365dc9489663ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20778451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20778451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,41467,42536,51297,57995,57999,58228,58232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23341238$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Giraldo, R</creatorcontrib><creatorcontrib>Delicado, P</creatorcontrib><creatorcontrib>Mateu, J</creatorcontrib><title>Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application</title><title>Journal of agricultural, biological, and environmental statistics</title><addtitle>JABES</addtitle><description>Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated curves. First, a smoothing process is applied to the curves by expanding the curves and the functional parameters in terms of a set of basis functions. The number of basis functions is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as a pointwise linear combination of the smoothed data. The prediction problem is solved by estimating a linear model of coregionalization to set the spatial dependence among the fitted coefficients. We extend an optimization criterion used in multivariable geostatistics to the functional context. The method is illustrated by smoothing and predicting temperature curves measured at 35 Canadian weather stations.</description><subject>Agriculture</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</subject><subject>Biostatistics</subject><subject>Climate models</subject><subject>Data analysis</subject><subject>Data smoothing</subject><subject>Datasets</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>Geostatistics</subject><subject>Health Sciences</subject><subject>Kriging</subject><subject>Mathematical functions</subject><subject>Mathematical independent variables</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Modeling</subject><subject>Monitoring/Environmental Analysis</subject><subject>prediction</subject><subject>Statistical variance</subject><subject>Statistics</subject><subject>Statistics for Life Sciences</subject><subject>temperature</subject><subject>weather</subject><subject>weather stations</subject><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UU1v1DAQjRBIlJYfwAGRCwcOae3YThxuq6UtVSuB2JarNfHakVdZO7KdCvrrO0tQUS_IsmY078PyvKJ4R8kpJaQ9S5TVglWEdHhpXT28KI6oYG1VNx17iT2RomopbV8Xb1LaIYc1pD4qhnXw2fk5zKm8dXtT_YT42_mhvI5uOFQbYrmZIDsYy-_RbJ3OLvgy2PJi9n96BL5Ahs_lypfn_t7F4PfGZxyvpml0Gg6kk-KVhTGZt3_rcXF3cX67_lrdfLu8Wq9uKi14kyumiRZ9y6mhjTRiSzhteNPJrrVge8aItUJDLy1ozknf9PgNsdUdl13TMNDsuDhdfAcYjXLehhxB49mavdPBG-twvmKylkR0vEPBp2cC5GTzKw8wp6SuNj-ec-nC1TGkFI1VU3R7XJiiRB1iUEsMCmNQhxjUA2o-LpoJkobRRvDapSdhzRinNZPIqxdeQsgPJqpdmCMuN_3X_P0i2qUc4j9T0raSC4r4hwW3EBQMER--29SEcoJ-QrSSPQLi3aqR</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Giraldo, R</creator><creator>Delicado, P</creator><creator>Mateu, J</creator><general>International Biometric Society</general><general>Springer-Verlag</general><general>American Statistical Association</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20100301</creationdate><title>Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application</title><author>Giraldo, R ; Delicado, P ; Mateu, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-3c0c5b741e168e5d0416469897fafb330ff5cab8fac440b6b1365dc9489663ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agriculture</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Biometrics, statistics, experimental designs, modeling, agricultural computer applications</topic><topic>Biostatistics</topic><topic>Climate models</topic><topic>Data analysis</topic><topic>Data smoothing</topic><topic>Datasets</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>Geostatistics</topic><topic>Health Sciences</topic><topic>Kriging</topic><topic>Mathematical functions</topic><topic>Mathematical independent variables</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Modeling</topic><topic>Monitoring/Environmental Analysis</topic><topic>prediction</topic><topic>Statistical variance</topic><topic>Statistics</topic><topic>Statistics for Life Sciences</topic><topic>temperature</topic><topic>weather</topic><topic>weather stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giraldo, R</creatorcontrib><creatorcontrib>Delicado, P</creatorcontrib><creatorcontrib>Mateu, J</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giraldo, R</au><au>Delicado, P</au><au>Mateu, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><stitle>JABES</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>15</volume><issue>1</issue><spage>66</spage><epage>82</epage><pages>66-82</pages><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>Spatially correlated functional data are present in a wide range of environmental disciplines and, in this context, efficient prediction of curves is a key issue. We present an approach for spatial prediction based on the functional linear pointwise model adapted to the case of spatially correlated curves. First, a smoothing process is applied to the curves by expanding the curves and the functional parameters in terms of a set of basis functions. The number of basis functions is chosen by cross-validation. Then, the spatial prediction of a curve is obtained as a pointwise linear combination of the smoothed data. The prediction problem is solved by estimating a linear model of coregionalization to set the spatial dependence among the fitted coefficients. We extend an optimization criterion used in multivariable geostatistics to the functional context. The method is illustrated by smoothing and predicting temperature curves measured at 35 Canadian weather stations.</abstract><cop>New York</cop><pub>International Biometric Society</pub><doi>10.1007/s13253-009-0012-z</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 2010-03, Vol.15 (1), p.66-82
issn 1085-7117
1537-2693
language eng
recordid cdi_gale_infotracacademiconefile_A382805949
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Springer Nature - Complete Springer Journals
subjects Agriculture
Agronomy. Soil science and plant productions
Biological and medical sciences
Biometrics, statistics, experimental designs, modeling, agricultural computer applications
Biostatistics
Climate models
Data analysis
Data smoothing
Datasets
Fundamental and applied biological sciences. Psychology
Generalities. Biometrics, experimentation. Remote sensing
Geostatistics
Health Sciences
Kriging
Mathematical functions
Mathematical independent variables
Mathematics and Statistics
Medicine
Modeling
Monitoring/Environmental Analysis
prediction
Statistical variance
Statistics
Statistics for Life Sciences
temperature
weather
weather stations
title Continuous Time-Varying Kriging for Spatial Prediction of Functional Data: An Environmental Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20Time-Varying%20Kriging%20for%20Spatial%20Prediction%20of%20Functional%20Data:%20An%20Environmental%20Application&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Giraldo,%20R&rft.date=2010-03-01&rft.volume=15&rft.issue=1&rft.spage=66&rft.epage=82&rft.pages=66-82&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-009-0012-z&rft_dat=%3Cgale_cross%3EA382805949%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A382805949&rft_jstor_id=20778451&rfr_iscdi=true