Acoustic conductance of an anisotropic shell submerged in a liquid 2. A parametric analysis of frequency characteristics

Based on a model of radial vibrations of a hollow sphere caused by a harmonic source located on its inner radius, the frequency spectrum of a spherical shell, made of a transversely isotropic material and contacting a liquid medium, under changes in its thickness and in material properties in the ci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of composite materials 2012-11, Vol.48 (5), p.559
1. Verfasser: Polyakov, V.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 559
container_title Mechanics of composite materials
container_volume 48
creator Polyakov, V.A
description Based on a model of radial vibrations of a hollow sphere caused by a harmonic source located on its inner radius, the frequency spectrum of a spherical shell, made of a transversely isotropic material and contacting a liquid medium, under changes in its thickness and in material properties in the circumferential and radial directions is investigated. The eigenvalues of the boundary-value problem are considered in an arbitrary range of physical parameters of the model by using functions of complex variable and the theory of residues. The solution of the transcendental equation for eigenvalues (frequencies), which is obtained as a combination of modified Bessel functions, is analyzed in the cases of light and heavy incompressible liquids (or vacuum). The values of eigenfrequencies are presented and analyzed with respect to depth of the region of disturbance (or thickness of the shell) and material properties. The approximate values of thickness of the anisotropic sphere corresponding to a steep rise in the natural frequencies of radial vibrations are revealed. The wave model of a thick-wall sphere is transformed into the vibration analog of a thin-wall shell.
doi_str_mv 10.1007/s11029-012-9300-8
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A373747462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A373747462</galeid><sourcerecordid>A373747462</sourcerecordid><originalsourceid>FETCH-LOGICAL-g298t-7825b649ef4d5b7f9b48f29962cb51d1a82189176ea316fb6092fa553b86fbe33</originalsourceid><addsrcrecordid>eNpVT8lqwzAQFaWFpmk_oDdde3CqxdqOJnQJBApdzkGWR46KYyeWDOnfV6E9tMzAMPOW4SF0S8mCEqLuI6WEmYJQVhhOSKHP0IwKxQttGDtHM0INLYSU4hJdxfhJSFYROUPHyg1TTMFhN_TN5JLtHeDBY9vnDnFI47DPaNxC1-E41TsYW2hwyDDuwmEKDWYLXOG9He0O0pi5trfdVwzxZONHOEzQuy_stpnhEozh9C5eowtvuwg3v3OOPh4f3pfPxfrlabWs1kXLjE6F0kzUsjTgy0bUypu61J4ZI5mrBW2o1YxqQ5UEy6n0tSSGeSsEr3XegPM5Wvz4traDTeh9TmRdrgZ2IWcGH_K94oqrUpWSZcHdP0HmJDim1k4xblZvr3-534aVceI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acoustic conductance of an anisotropic shell submerged in a liquid 2. A parametric analysis of frequency characteristics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Polyakov, V.A</creator><creatorcontrib>Polyakov, V.A</creatorcontrib><description>Based on a model of radial vibrations of a hollow sphere caused by a harmonic source located on its inner radius, the frequency spectrum of a spherical shell, made of a transversely isotropic material and contacting a liquid medium, under changes in its thickness and in material properties in the circumferential and radial directions is investigated. The eigenvalues of the boundary-value problem are considered in an arbitrary range of physical parameters of the model by using functions of complex variable and the theory of residues. The solution of the transcendental equation for eigenvalues (frequencies), which is obtained as a combination of modified Bessel functions, is analyzed in the cases of light and heavy incompressible liquids (or vacuum). The values of eigenfrequencies are presented and analyzed with respect to depth of the region of disturbance (or thickness of the shell) and material properties. The approximate values of thickness of the anisotropic sphere corresponding to a steep rise in the natural frequencies of radial vibrations are revealed. The wave model of a thick-wall sphere is transformed into the vibration analog of a thin-wall shell.</description><identifier>ISSN: 0191-5665</identifier><identifier>EISSN: 1573-8922</identifier><identifier>DOI: 10.1007/s11029-012-9300-8</identifier><language>eng</language><publisher>Springer</publisher><subject>Analysis ; Anisotropy ; Vibration</subject><ispartof>Mechanics of composite materials, 2012-11, Vol.48 (5), p.559</ispartof><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Polyakov, V.A</creatorcontrib><title>Acoustic conductance of an anisotropic shell submerged in a liquid 2. A parametric analysis of frequency characteristics</title><title>Mechanics of composite materials</title><description>Based on a model of radial vibrations of a hollow sphere caused by a harmonic source located on its inner radius, the frequency spectrum of a spherical shell, made of a transversely isotropic material and contacting a liquid medium, under changes in its thickness and in material properties in the circumferential and radial directions is investigated. The eigenvalues of the boundary-value problem are considered in an arbitrary range of physical parameters of the model by using functions of complex variable and the theory of residues. The solution of the transcendental equation for eigenvalues (frequencies), which is obtained as a combination of modified Bessel functions, is analyzed in the cases of light and heavy incompressible liquids (or vacuum). The values of eigenfrequencies are presented and analyzed with respect to depth of the region of disturbance (or thickness of the shell) and material properties. The approximate values of thickness of the anisotropic sphere corresponding to a steep rise in the natural frequencies of radial vibrations are revealed. The wave model of a thick-wall sphere is transformed into the vibration analog of a thin-wall shell.</description><subject>Analysis</subject><subject>Anisotropy</subject><subject>Vibration</subject><issn>0191-5665</issn><issn>1573-8922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpVT8lqwzAQFaWFpmk_oDdde3CqxdqOJnQJBApdzkGWR46KYyeWDOnfV6E9tMzAMPOW4SF0S8mCEqLuI6WEmYJQVhhOSKHP0IwKxQttGDtHM0INLYSU4hJdxfhJSFYROUPHyg1TTMFhN_TN5JLtHeDBY9vnDnFI47DPaNxC1-E41TsYW2hwyDDuwmEKDWYLXOG9He0O0pi5trfdVwzxZONHOEzQuy_stpnhEozh9C5eowtvuwg3v3OOPh4f3pfPxfrlabWs1kXLjE6F0kzUsjTgy0bUypu61J4ZI5mrBW2o1YxqQ5UEy6n0tSSGeSsEr3XegPM5Wvz4traDTeh9TmRdrgZ2IWcGH_K94oqrUpWSZcHdP0HmJDim1k4xblZvr3-534aVceI</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Polyakov, V.A</creator><general>Springer</general><scope>ISR</scope></search><sort><creationdate>20121101</creationdate><title>Acoustic conductance of an anisotropic shell submerged in a liquid 2. A parametric analysis of frequency characteristics</title><author>Polyakov, V.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g298t-7825b649ef4d5b7f9b48f29962cb51d1a82189176ea316fb6092fa553b86fbe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Anisotropy</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polyakov, V.A</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Mechanics of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polyakov, V.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic conductance of an anisotropic shell submerged in a liquid 2. A parametric analysis of frequency characteristics</atitle><jtitle>Mechanics of composite materials</jtitle><date>2012-11-01</date><risdate>2012</risdate><volume>48</volume><issue>5</issue><spage>559</spage><pages>559-</pages><issn>0191-5665</issn><eissn>1573-8922</eissn><abstract>Based on a model of radial vibrations of a hollow sphere caused by a harmonic source located on its inner radius, the frequency spectrum of a spherical shell, made of a transversely isotropic material and contacting a liquid medium, under changes in its thickness and in material properties in the circumferential and radial directions is investigated. The eigenvalues of the boundary-value problem are considered in an arbitrary range of physical parameters of the model by using functions of complex variable and the theory of residues. The solution of the transcendental equation for eigenvalues (frequencies), which is obtained as a combination of modified Bessel functions, is analyzed in the cases of light and heavy incompressible liquids (or vacuum). The values of eigenfrequencies are presented and analyzed with respect to depth of the region of disturbance (or thickness of the shell) and material properties. The approximate values of thickness of the anisotropic sphere corresponding to a steep rise in the natural frequencies of radial vibrations are revealed. The wave model of a thick-wall sphere is transformed into the vibration analog of a thin-wall shell.</abstract><pub>Springer</pub><doi>10.1007/s11029-012-9300-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0191-5665
ispartof Mechanics of composite materials, 2012-11, Vol.48 (5), p.559
issn 0191-5665
1573-8922
language eng
recordid cdi_gale_infotracacademiconefile_A373747462
source SpringerLink Journals - AutoHoldings
subjects Analysis
Anisotropy
Vibration
title Acoustic conductance of an anisotropic shell submerged in a liquid 2. A parametric analysis of frequency characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T05%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20conductance%20of%20an%20anisotropic%20shell%20submerged%20in%20a%20liquid%202.%20A%20parametric%20analysis%20of%20frequency%20characteristics&rft.jtitle=Mechanics%20of%20composite%20materials&rft.au=Polyakov,%20V.A&rft.date=2012-11-01&rft.volume=48&rft.issue=5&rft.spage=559&rft.pages=559-&rft.issn=0191-5665&rft.eissn=1573-8922&rft_id=info:doi/10.1007/s11029-012-9300-8&rft_dat=%3Cgale%3EA373747462%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A373747462&rfr_iscdi=true