Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs
We show that for the anti-ferromagnetic Ising model on the Bethe lattice, weak spatial mixing implies strong spatial mixing. As a by-product of our analysis, we obtain what is to the best of our knowledge the first rigorous proof of the uniqueness threshold for the anti-ferromagnetic Ising model (wi...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2014-05, Vol.155 (4), p.666-686 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 686 |
---|---|
container_issue | 4 |
container_start_page | 666 |
container_title | Journal of statistical physics |
container_volume | 155 |
creator | Sinclair, Alistair Srivastava, Piyush Thurley, Marc |
description | We show that for the anti-ferromagnetic Ising model on the Bethe lattice, weak spatial mixing implies strong spatial mixing. As a by-product of our analysis, we obtain what is to the best of our knowledge the first rigorous proof of the uniqueness threshold for the anti-ferromagnetic Ising model (with non-zero external field) on the Bethe lattice. Following a method due to Weitz [
15
], we then use the equivalence between weak and strong spatial mixing to give a deterministic fully polynomial time approximation scheme for the partition function of the anti-ferromagnetic Ising model with arbitrary field on graphs of degree at most
d
, throughout the uniqueness region of the Gibbs measure on the infinite
d
-regular tree. By a standard correspondence, our results translate to arbitrary two-state anti-ferromagnetic spin systems with soft constraints. Subsequent to a preliminary version of this paper, Sly and Sun [
13
] have shown that our results are optimal in the sense that, under standard complexity theoretic assumptions, there does not exist a fully polynomial time approximation scheme for the partition function of such spin systems on graphs of maximum degree
d
for parameters outside the uniqueness region. Taken together, the results of [
13
] and of this paper therefore indicate a tight relationship between complexity theory and phase transition phenomena in two-state anti-ferromagnetic spin systems. |
doi_str_mv | 10.1007/s10955-014-0947-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A371467505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A371467505</galeid><sourcerecordid>A371467505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-9e6ea6117697b5ecabffa19e21a9902e7f3e21cdaf37abe541a2374acbcb29833</originalsourceid><addsrcrecordid>eNp9kMFOAyEQhonRxFp9AG_7AlTYXZZyXKtWkyYeWs-EpcOWpoUN0GjfXpr1bOYwk8n_TTIfQo-UzCgh_ClSIhjDhNaYiJpjdoUmlPESi4ZW12hCSFnimlN2i-5i3BNCxFywCZLtMAT_Y48qWe-K9tD7YNPuGAvjQ7H59nidVIKidcniNwjBH1XvIFldrAfrivU5JsjpzD77k9vCtniBPgAUy6CGXbxHN0YdIjz89Sn6envdLN7x6nP5sWhXWFecJCygAdVQyhvBOwZadcYoKqCkSghSAjdVnvVWmYqrDlhNVVnxWulOd6WYV9UUzca7vTqAtM74FJTOtYWj1d6BsXnfVpzWDWeEZYCOgA4-xgBGDiFbCGdJibwolaNSmZXKi1J5YcqRiTnreghy70_B5b_-gX4BHi161w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs</title><source>Springer Nature - Complete Springer Journals</source><creator>Sinclair, Alistair ; Srivastava, Piyush ; Thurley, Marc</creator><creatorcontrib>Sinclair, Alistair ; Srivastava, Piyush ; Thurley, Marc</creatorcontrib><description>We show that for the anti-ferromagnetic Ising model on the Bethe lattice, weak spatial mixing implies strong spatial mixing. As a by-product of our analysis, we obtain what is to the best of our knowledge the first rigorous proof of the uniqueness threshold for the anti-ferromagnetic Ising model (with non-zero external field) on the Bethe lattice. Following a method due to Weitz [
15
], we then use the equivalence between weak and strong spatial mixing to give a deterministic fully polynomial time approximation scheme for the partition function of the anti-ferromagnetic Ising model with arbitrary field on graphs of degree at most
d
, throughout the uniqueness region of the Gibbs measure on the infinite
d
-regular tree. By a standard correspondence, our results translate to arbitrary two-state anti-ferromagnetic spin systems with soft constraints. Subsequent to a preliminary version of this paper, Sly and Sun [
13
] have shown that our results are optimal in the sense that, under standard complexity theoretic assumptions, there does not exist a fully polynomial time approximation scheme for the partition function of such spin systems on graphs of maximum degree
d
for parameters outside the uniqueness region. Taken together, the results of [
13
] and of this paper therefore indicate a tight relationship between complexity theory and phase transition phenomena in two-state anti-ferromagnetic spin systems.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-014-0947-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Ferromagnetism ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2014-05, Vol.155 (4), p.666-686</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-9e6ea6117697b5ecabffa19e21a9902e7f3e21cdaf37abe541a2374acbcb29833</citedby><cites>FETCH-LOGICAL-c370t-9e6ea6117697b5ecabffa19e21a9902e7f3e21cdaf37abe541a2374acbcb29833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-014-0947-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-014-0947-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Sinclair, Alistair</creatorcontrib><creatorcontrib>Srivastava, Piyush</creatorcontrib><creatorcontrib>Thurley, Marc</creatorcontrib><title>Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We show that for the anti-ferromagnetic Ising model on the Bethe lattice, weak spatial mixing implies strong spatial mixing. As a by-product of our analysis, we obtain what is to the best of our knowledge the first rigorous proof of the uniqueness threshold for the anti-ferromagnetic Ising model (with non-zero external field) on the Bethe lattice. Following a method due to Weitz [
15
], we then use the equivalence between weak and strong spatial mixing to give a deterministic fully polynomial time approximation scheme for the partition function of the anti-ferromagnetic Ising model with arbitrary field on graphs of degree at most
d
, throughout the uniqueness region of the Gibbs measure on the infinite
d
-regular tree. By a standard correspondence, our results translate to arbitrary two-state anti-ferromagnetic spin systems with soft constraints. Subsequent to a preliminary version of this paper, Sly and Sun [
13
] have shown that our results are optimal in the sense that, under standard complexity theoretic assumptions, there does not exist a fully polynomial time approximation scheme for the partition function of such spin systems on graphs of maximum degree
d
for parameters outside the uniqueness region. Taken together, the results of [
13
] and of this paper therefore indicate a tight relationship between complexity theory and phase transition phenomena in two-state anti-ferromagnetic spin systems.</description><subject>Algorithms</subject><subject>Ferromagnetism</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAyEQhonRxFp9AG_7AlTYXZZyXKtWkyYeWs-EpcOWpoUN0GjfXpr1bOYwk8n_TTIfQo-UzCgh_ClSIhjDhNaYiJpjdoUmlPESi4ZW12hCSFnimlN2i-5i3BNCxFywCZLtMAT_Y48qWe-K9tD7YNPuGAvjQ7H59nidVIKidcniNwjBH1XvIFldrAfrivU5JsjpzD77k9vCtniBPgAUy6CGXbxHN0YdIjz89Sn6envdLN7x6nP5sWhXWFecJCygAdVQyhvBOwZadcYoKqCkSghSAjdVnvVWmYqrDlhNVVnxWulOd6WYV9UUzca7vTqAtM74FJTOtYWj1d6BsXnfVpzWDWeEZYCOgA4-xgBGDiFbCGdJibwolaNSmZXKi1J5YcqRiTnreghy70_B5b_-gX4BHi161w</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Sinclair, Alistair</creator><creator>Srivastava, Piyush</creator><creator>Thurley, Marc</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140501</creationdate><title>Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs</title><author>Sinclair, Alistair ; Srivastava, Piyush ; Thurley, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-9e6ea6117697b5ecabffa19e21a9902e7f3e21cdaf37abe541a2374acbcb29833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Ferromagnetism</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinclair, Alistair</creatorcontrib><creatorcontrib>Srivastava, Piyush</creatorcontrib><creatorcontrib>Thurley, Marc</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinclair, Alistair</au><au>Srivastava, Piyush</au><au>Thurley, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>155</volume><issue>4</issue><spage>666</spage><epage>686</epage><pages>666-686</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We show that for the anti-ferromagnetic Ising model on the Bethe lattice, weak spatial mixing implies strong spatial mixing. As a by-product of our analysis, we obtain what is to the best of our knowledge the first rigorous proof of the uniqueness threshold for the anti-ferromagnetic Ising model (with non-zero external field) on the Bethe lattice. Following a method due to Weitz [
15
], we then use the equivalence between weak and strong spatial mixing to give a deterministic fully polynomial time approximation scheme for the partition function of the anti-ferromagnetic Ising model with arbitrary field on graphs of degree at most
d
, throughout the uniqueness region of the Gibbs measure on the infinite
d
-regular tree. By a standard correspondence, our results translate to arbitrary two-state anti-ferromagnetic spin systems with soft constraints. Subsequent to a preliminary version of this paper, Sly and Sun [
13
] have shown that our results are optimal in the sense that, under standard complexity theoretic assumptions, there does not exist a fully polynomial time approximation scheme for the partition function of such spin systems on graphs of maximum degree
d
for parameters outside the uniqueness region. Taken together, the results of [
13
] and of this paper therefore indicate a tight relationship between complexity theory and phase transition phenomena in two-state anti-ferromagnetic spin systems.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-014-0947-5</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2014-05, Vol.155 (4), p.666-686 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A371467505 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Ferromagnetism Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20Algorithms%20for%20Two-State%20Anti-Ferromagnetic%20Spin%20Systems%20on%20Bounded%20Degree%20Graphs&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Sinclair,%20Alistair&rft.date=2014-05-01&rft.volume=155&rft.issue=4&rft.spage=666&rft.epage=686&rft.pages=666-686&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-014-0947-5&rft_dat=%3Cgale_cross%3EA371467505%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A371467505&rfr_iscdi=true |