Evolved gas analysis by single photon ionization-mass spectrometry: A tool to distinguish different types of coffee

The applicability of thermogravimetry (TG) coupled to single photon ionization time-of-flight mass spectrometry (TG-SPI-TOFMS) for evolved gas analysis (EGA) of coffee is demonstrated in this study. Coffee is a chemically well-known complex food product of large scientific and commercial interest. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2014-06, Vol.116 (3), p.1461-1469
Hauptverfasser: Fischer, M., Wohlfahrt, S., Varga, J., Saraji-Bozorgzad, M., Matuschek, G., Denner, T., Zimmermann, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The applicability of thermogravimetry (TG) coupled to single photon ionization time-of-flight mass spectrometry (TG-SPI-TOFMS) for evolved gas analysis (EGA) of coffee is demonstrated in this study. Coffee is a chemically well-known complex food product of large scientific and commercial interest. The roasting process of single green coffee beans (Arabica, Robusta) was simulated in the TG-SPI-TOFMS device, and the chemical composition of the evolved roasting gases was monitored on-line. Additionally, roasted and ground coffee powders of different types and brands as well as instant coffee were successfully investigated. For example, the diterpenes cafestol and kahweol can be detected among many other roasting products. These compounds can be of particular interest for quality control of coffee. It is shown that kahweol can be used as a tracer compound to discriminate arabica coffee species from robusta species.
ISSN:1388-6150
1588-2926
DOI:10.1007/s10973-014-3830-3