Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data

A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the conden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering physics and thermophysics 2014, Vol.87 (1), p.237-245
Hauptverfasser: Kryukov, A. P., Levashov, V. Yu, Pavlyukevich, N. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 1
container_start_page 237
container_title Journal of engineering physics and thermophysics
container_volume 87
creator Kryukov, A. P.
Levashov, V. Yu
Pavlyukevich, N. V.
description A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented.
doi_str_mv 10.1007/s10891-014-1006-4
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A370999396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370999396</galeid><sourcerecordid>A370999396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-5525a705c81ad2263651cb240dbb77bc66c481a2bad017def93e454e531dc0983</originalsourceid><addsrcrecordid>eNp9UE1LAzEQXUTBWv0B3vYquDXZbLK73sq2aqEi-AEehJBNsiVlm5QkhfrvnbK99CJzmHkz7w28lyS3GE0wQuVDwKiqcYZwkQFmWXGWjDAtSVaV-PscZsRyuOb0MrkKYY0QqquCjJKfxlmlbRDROJs2TnedkUbb-JjOdGesOezDfToP0WzEEbw6pb1N5_ut9mYDZNGnwqq0Eb3c9cOrmYjiOrnoRB_0zbGPk6-n-Wfzki3fnhfNdJlJwnDMKM2pKBGVFRYqzxlhFMs2L5Bq27JsJWOygFPeCoVwqXRXE13QQlOClQQfZJxMhr8r0WtubOeiFxJK6Y2RzoIR2E9Jieq6JjUDwd2JADhR7-NK7ELgi4_3Uy4euNK7ELzu-BZMC__LMeKH7PmQPYfsD5jxAjT5oAnAtSvt-drtvIUM_hH9Afkrhmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kryukov, A. P. ; Levashov, V. Yu ; Pavlyukevich, N. V.</creator><creatorcontrib>Kryukov, A. P. ; Levashov, V. Yu ; Pavlyukevich, N. V.</creatorcontrib><description>A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-014-1006-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Classical Mechanics ; Complex Systems ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Kinetic Theory of Transfer Processes ; Thermodynamics</subject><ispartof>Journal of engineering physics and thermophysics, 2014, Vol.87 (1), p.237-245</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-5525a705c81ad2263651cb240dbb77bc66c481a2bad017def93e454e531dc0983</citedby><cites>FETCH-LOGICAL-c361t-5525a705c81ad2263651cb240dbb77bc66c481a2bad017def93e454e531dc0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-014-1006-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-014-1006-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kryukov, A. P.</creatorcontrib><creatorcontrib>Levashov, V. Yu</creatorcontrib><creatorcontrib>Pavlyukevich, N. V.</creatorcontrib><title>Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kinetic Theory of Transfer Processes</subject><subject>Thermodynamics</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQXUTBWv0B3vYquDXZbLK73sq2aqEi-AEehJBNsiVlm5QkhfrvnbK99CJzmHkz7w28lyS3GE0wQuVDwKiqcYZwkQFmWXGWjDAtSVaV-PscZsRyuOb0MrkKYY0QqquCjJKfxlmlbRDROJs2TnedkUbb-JjOdGesOezDfToP0WzEEbw6pb1N5_ut9mYDZNGnwqq0Eb3c9cOrmYjiOrnoRB_0zbGPk6-n-Wfzki3fnhfNdJlJwnDMKM2pKBGVFRYqzxlhFMs2L5Bq27JsJWOygFPeCoVwqXRXE13QQlOClQQfZJxMhr8r0WtubOeiFxJK6Y2RzoIR2E9Jieq6JjUDwd2JADhR7-NK7ELgi4_3Uy4euNK7ELzu-BZMC__LMeKH7PmQPYfsD5jxAjT5oAnAtSvt-drtvIUM_hH9Afkrhmo</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Kryukov, A. P.</creator><creator>Levashov, V. Yu</creator><creator>Pavlyukevich, N. V.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2014</creationdate><title>Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data</title><author>Kryukov, A. P. ; Levashov, V. Yu ; Pavlyukevich, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-5525a705c81ad2263651cb240dbb77bc66c481a2bad017def93e454e531dc0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kinetic Theory of Transfer Processes</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kryukov, A. P.</creatorcontrib><creatorcontrib>Levashov, V. Yu</creatorcontrib><creatorcontrib>Pavlyukevich, N. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kryukov, A. P.</au><au>Levashov, V. Yu</au><au>Pavlyukevich, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2014</date><risdate>2014</risdate><volume>87</volume><issue>1</issue><spage>237</spage><epage>245</epage><pages>237-245</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10891-014-1006-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-0125
ispartof Journal of engineering physics and thermophysics, 2014, Vol.87 (1), p.237-245
issn 1062-0125
1573-871X
language eng
recordid cdi_gale_infotracacademiconefile_A370999396
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Complex Systems
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Kinetic Theory of Transfer Processes
Thermodynamics
title Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condensation%20Coefficient:%20Definitions,%20Estimations,%20Modern%20Experimental%20and%20Calculation%20Data&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Kryukov,%20A.%20P.&rft.date=2014&rft.volume=87&rft.issue=1&rft.spage=237&rft.epage=245&rft.pages=237-245&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-014-1006-4&rft_dat=%3Cgale_cross%3EA370999396%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A370999396&rfr_iscdi=true