Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data
A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the conden...
Gespeichert in:
Veröffentlicht in: | Journal of engineering physics and thermophysics 2014, Vol.87 (1), p.237-245 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 1 |
container_start_page | 237 |
container_title | Journal of engineering physics and thermophysics |
container_volume | 87 |
creator | Kryukov, A. P. Levashov, V. Yu Pavlyukevich, N. V. |
description | A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented. |
doi_str_mv | 10.1007/s10891-014-1006-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A370999396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A370999396</galeid><sourcerecordid>A370999396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-5525a705c81ad2263651cb240dbb77bc66c481a2bad017def93e454e531dc0983</originalsourceid><addsrcrecordid>eNp9UE1LAzEQXUTBWv0B3vYquDXZbLK73sq2aqEi-AEehJBNsiVlm5QkhfrvnbK99CJzmHkz7w28lyS3GE0wQuVDwKiqcYZwkQFmWXGWjDAtSVaV-PscZsRyuOb0MrkKYY0QqquCjJKfxlmlbRDROJs2TnedkUbb-JjOdGesOezDfToP0WzEEbw6pb1N5_ut9mYDZNGnwqq0Eb3c9cOrmYjiOrnoRB_0zbGPk6-n-Wfzki3fnhfNdJlJwnDMKM2pKBGVFRYqzxlhFMs2L5Bq27JsJWOygFPeCoVwqXRXE13QQlOClQQfZJxMhr8r0WtubOeiFxJK6Y2RzoIR2E9Jieq6JjUDwd2JADhR7-NK7ELgi4_3Uy4euNK7ELzu-BZMC__LMeKH7PmQPYfsD5jxAjT5oAnAtSvt-drtvIUM_hH9Afkrhmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kryukov, A. P. ; Levashov, V. Yu ; Pavlyukevich, N. V.</creator><creatorcontrib>Kryukov, A. P. ; Levashov, V. Yu ; Pavlyukevich, N. V.</creatorcontrib><description>A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented.</description><identifier>ISSN: 1062-0125</identifier><identifier>EISSN: 1573-871X</identifier><identifier>DOI: 10.1007/s10891-014-1006-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Classical Mechanics ; Complex Systems ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Kinetic Theory of Transfer Processes ; Thermodynamics</subject><ispartof>Journal of engineering physics and thermophysics, 2014, Vol.87 (1), p.237-245</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-5525a705c81ad2263651cb240dbb77bc66c481a2bad017def93e454e531dc0983</citedby><cites>FETCH-LOGICAL-c361t-5525a705c81ad2263651cb240dbb77bc66c481a2bad017def93e454e531dc0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10891-014-1006-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10891-014-1006-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kryukov, A. P.</creatorcontrib><creatorcontrib>Levashov, V. Yu</creatorcontrib><creatorcontrib>Pavlyukevich, N. V.</creatorcontrib><title>Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data</title><title>Journal of engineering physics and thermophysics</title><addtitle>J Eng Phys Thermophy</addtitle><description>A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented.</description><subject>Classical Mechanics</subject><subject>Complex Systems</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kinetic Theory of Transfer Processes</subject><subject>Thermodynamics</subject><issn>1062-0125</issn><issn>1573-871X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQXUTBWv0B3vYquDXZbLK73sq2aqEi-AEehJBNsiVlm5QkhfrvnbK99CJzmHkz7w28lyS3GE0wQuVDwKiqcYZwkQFmWXGWjDAtSVaV-PscZsRyuOb0MrkKYY0QqquCjJKfxlmlbRDROJs2TnedkUbb-JjOdGesOezDfToP0WzEEbw6pb1N5_ut9mYDZNGnwqq0Eb3c9cOrmYjiOrnoRB_0zbGPk6-n-Wfzki3fnhfNdJlJwnDMKM2pKBGVFRYqzxlhFMs2L5Bq27JsJWOygFPeCoVwqXRXE13QQlOClQQfZJxMhr8r0WtubOeiFxJK6Y2RzoIR2E9Jieq6JjUDwd2JADhR7-NK7ELgi4_3Uy4euNK7ELzu-BZMC__LMeKH7PmQPYfsD5jxAjT5oAnAtSvt-drtvIUM_hH9Afkrhmo</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Kryukov, A. P.</creator><creator>Levashov, V. Yu</creator><creator>Pavlyukevich, N. V.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>2014</creationdate><title>Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data</title><author>Kryukov, A. P. ; Levashov, V. Yu ; Pavlyukevich, N. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-5525a705c81ad2263651cb240dbb77bc66c481a2bad017def93e454e531dc0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classical Mechanics</topic><topic>Complex Systems</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kinetic Theory of Transfer Processes</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kryukov, A. P.</creatorcontrib><creatorcontrib>Levashov, V. Yu</creatorcontrib><creatorcontrib>Pavlyukevich, N. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of engineering physics and thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kryukov, A. P.</au><au>Levashov, V. Yu</au><au>Pavlyukevich, N. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data</atitle><jtitle>Journal of engineering physics and thermophysics</jtitle><stitle>J Eng Phys Thermophy</stitle><date>2014</date><risdate>2014</risdate><volume>87</volume><issue>1</issue><spage>237</spage><epage>245</epage><pages>237-245</pages><issn>1062-0125</issn><eissn>1573-871X</eissn><abstract>A brief analysis of different approaches to the calculation and measurement of the condensation coefficient of a vapor is presented. It is shown that, on frequent occasions, calculations give values of this coefficient that are at variance with the corresponding experimental data and that the condensation coefficient is determined most exactly on the basis of the molecular-kinetic theory. It was established that the spread in the literature data on the measured values of this coefficient is explained mainly by the fact that these values were obtained not in the immediate vicinity from the boundary between the gas and liquid phases but at a large distance (as compared to the mean free path of molecules) from it. Results of calculations of the condensation coefficient of argon by the method of moleculardynamic simulation are presented.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10891-014-1006-4</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-0125 |
ispartof | Journal of engineering physics and thermophysics, 2014, Vol.87 (1), p.237-245 |
issn | 1062-0125 1573-871X |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A370999396 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical Mechanics Complex Systems Engineering Engineering Thermodynamics Heat and Mass Transfer Industrial Chemistry/Chemical Engineering Kinetic Theory of Transfer Processes Thermodynamics |
title | Condensation Coefficient: Definitions, Estimations, Modern Experimental and Calculation Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Condensation%20Coefficient:%20Definitions,%20Estimations,%20Modern%20Experimental%20and%20Calculation%20Data&rft.jtitle=Journal%20of%20engineering%20physics%20and%20thermophysics&rft.au=Kryukov,%20A.%20P.&rft.date=2014&rft.volume=87&rft.issue=1&rft.spage=237&rft.epage=245&rft.pages=237-245&rft.issn=1062-0125&rft.eissn=1573-871X&rft_id=info:doi/10.1007/s10891-014-1006-4&rft_dat=%3Cgale_cross%3EA370999396%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A370999396&rfr_iscdi=true |