Distillation end point estimation in diesel fuel production

Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical and biochemical engineering quarterly 2013-06, Vol.27 (2), p.125
Hauptverfasser: Mohler, I, Andrijic, Z. Ujevic, Bolf, N, Galinec, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 125
container_title Chemical and biochemical engineering quarterly
container_volume 27
creator Mohler, I
Andrijic, Z. Ujevic
Bolf, N
Galinec, G
description Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the model identification are generated by Multivariate Adaptive Regression Splines (MARSplines). Soft sensors are developed using different linear and nonlinear identification methods. Among the variety of dynamic models, the best results are achieved with Box Jenkins (BJ), Output Error (OE) and Hammerstein-Wiener (HW) model. Developed models were evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE), mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes show BJ model. For continuous estimation of D95, OE and HW models can be used. Key words: Crude distillation unit, distillation end point, soft sensor, identification
format Article
fullrecord <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A361184958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A361184958</galeid><sourcerecordid>A361184958</sourcerecordid><originalsourceid>FETCH-LOGICAL-g194t-a9a994e30b30a3aca018709d75d329c83490d8358d0ca76935413bede323997e3</originalsourceid><addsrcrecordid>eNotjM1qAyEUhV200DTNO_gCU5y5OuOlq5D-QqCbdh1u9E6wGA3RvH8t6eYcznfguxELBWbo0Iz2TtyX8qPaBqsW4uk5lBpipBpykpy8POWQquRGj1cYkvSBC0c5X1qcztlf3N_zIG5nioVX_70U368vX5v3bvv59rFZb7tDj7p2hISoGdQeFAE5Ur2dFPrJeBjQWdCovAVjvXI0jQhG97BnzzAA4sSwFI9X74Ei70Kacz03jSPPx-By4jk0voax761GY-EXxDFGbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distillation end point estimation in diesel fuel production</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mohler, I ; Andrijic, Z. Ujevic ; Bolf, N ; Galinec, G</creator><creatorcontrib>Mohler, I ; Andrijic, Z. Ujevic ; Bolf, N ; Galinec, G</creatorcontrib><description>Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the model identification are generated by Multivariate Adaptive Regression Splines (MARSplines). Soft sensors are developed using different linear and nonlinear identification methods. Among the variety of dynamic models, the best results are achieved with Box Jenkins (BJ), Output Error (OE) and Hammerstein-Wiener (HW) model. Developed models were evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE), mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes show BJ model. For continuous estimation of D95, OE and HW models can be used. Key words: Crude distillation unit, distillation end point, soft sensor, identification</description><identifier>ISSN: 0352-9568</identifier><language>eng</language><publisher>Croatian Association of Chemical Engineers</publisher><subject>Chemical properties ; Chemical research ; Diesel fuels ; Distillation ; Production processes</subject><ispartof>Chemical and biochemical engineering quarterly, 2013-06, Vol.27 (2), p.125</ispartof><rights>COPYRIGHT 2013 Croatian Association of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Mohler, I</creatorcontrib><creatorcontrib>Andrijic, Z. Ujevic</creatorcontrib><creatorcontrib>Bolf, N</creatorcontrib><creatorcontrib>Galinec, G</creatorcontrib><title>Distillation end point estimation in diesel fuel production</title><title>Chemical and biochemical engineering quarterly</title><description>Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the model identification are generated by Multivariate Adaptive Regression Splines (MARSplines). Soft sensors are developed using different linear and nonlinear identification methods. Among the variety of dynamic models, the best results are achieved with Box Jenkins (BJ), Output Error (OE) and Hammerstein-Wiener (HW) model. Developed models were evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE), mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes show BJ model. For continuous estimation of D95, OE and HW models can be used. Key words: Crude distillation unit, distillation end point, soft sensor, identification</description><subject>Chemical properties</subject><subject>Chemical research</subject><subject>Diesel fuels</subject><subject>Distillation</subject><subject>Production processes</subject><issn>0352-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjM1qAyEUhV200DTNO_gCU5y5OuOlq5D-QqCbdh1u9E6wGA3RvH8t6eYcznfguxELBWbo0Iz2TtyX8qPaBqsW4uk5lBpipBpykpy8POWQquRGj1cYkvSBC0c5X1qcztlf3N_zIG5nioVX_70U368vX5v3bvv59rFZb7tDj7p2hISoGdQeFAE5Ur2dFPrJeBjQWdCovAVjvXI0jQhG97BnzzAA4sSwFI9X74Ei70Kacz03jSPPx-By4jk0voax761GY-EXxDFGbQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Mohler, I</creator><creator>Andrijic, Z. Ujevic</creator><creator>Bolf, N</creator><creator>Galinec, G</creator><general>Croatian Association of Chemical Engineers</general><scope/></search><sort><creationdate>20130601</creationdate><title>Distillation end point estimation in diesel fuel production</title><author>Mohler, I ; Andrijic, Z. Ujevic ; Bolf, N ; Galinec, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g194t-a9a994e30b30a3aca018709d75d329c83490d8358d0ca76935413bede323997e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical properties</topic><topic>Chemical research</topic><topic>Diesel fuels</topic><topic>Distillation</topic><topic>Production processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohler, I</creatorcontrib><creatorcontrib>Andrijic, Z. Ujevic</creatorcontrib><creatorcontrib>Bolf, N</creatorcontrib><creatorcontrib>Galinec, G</creatorcontrib><jtitle>Chemical and biochemical engineering quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohler, I</au><au>Andrijic, Z. Ujevic</au><au>Bolf, N</au><au>Galinec, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distillation end point estimation in diesel fuel production</atitle><jtitle>Chemical and biochemical engineering quarterly</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>27</volume><issue>2</issue><spage>125</spage><pages>125-</pages><issn>0352-9568</issn><abstract>Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the model identification are generated by Multivariate Adaptive Regression Splines (MARSplines). Soft sensors are developed using different linear and nonlinear identification methods. Among the variety of dynamic models, the best results are achieved with Box Jenkins (BJ), Output Error (OE) and Hammerstein-Wiener (HW) model. Developed models were evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE), mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes show BJ model. For continuous estimation of D95, OE and HW models can be used. Key words: Crude distillation unit, distillation end point, soft sensor, identification</abstract><pub>Croatian Association of Chemical Engineers</pub></addata></record>
fulltext fulltext
identifier ISSN: 0352-9568
ispartof Chemical and biochemical engineering quarterly, 2013-06, Vol.27 (2), p.125
issn 0352-9568
language eng
recordid cdi_gale_infotracacademiconefile_A361184958
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Chemical properties
Chemical research
Diesel fuels
Distillation
Production processes
title Distillation end point estimation in diesel fuel production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distillation%20end%20point%20estimation%20in%20diesel%20fuel%20production&rft.jtitle=Chemical%20and%20biochemical%20engineering%20quarterly&rft.au=Mohler,%20I&rft.date=2013-06-01&rft.volume=27&rft.issue=2&rft.spage=125&rft.pages=125-&rft.issn=0352-9568&rft_id=info:doi/&rft_dat=%3Cgale%3EA361184958%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A361184958&rfr_iscdi=true