Distillation end point estimation in diesel fuel production
Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data wh...
Gespeichert in:
Veröffentlicht in: | Chemical and biochemical engineering quarterly 2013-06, Vol.27 (2), p.125 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 125 |
container_title | Chemical and biochemical engineering quarterly |
container_volume | 27 |
creator | Mohler, I Andrijic, Z. Ujevic Bolf, N Galinec, G |
description | Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the model identification are generated by Multivariate Adaptive Regression Splines (MARSplines). Soft sensors are developed using different linear and nonlinear identification methods. Among the variety of dynamic models, the best results are achieved with Box Jenkins (BJ), Output Error (OE) and Hammerstein-Wiener (HW) model. Developed models were evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE), mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes show BJ model. For continuous estimation of D95, OE and HW models can be used. Key words: Crude distillation unit, distillation end point, soft sensor, identification |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A361184958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A361184958</galeid><sourcerecordid>A361184958</sourcerecordid><originalsourceid>FETCH-LOGICAL-g194t-a9a994e30b30a3aca018709d75d329c83490d8358d0ca76935413bede323997e3</originalsourceid><addsrcrecordid>eNotjM1qAyEUhV200DTNO_gCU5y5OuOlq5D-QqCbdh1u9E6wGA3RvH8t6eYcznfguxELBWbo0Iz2TtyX8qPaBqsW4uk5lBpipBpykpy8POWQquRGj1cYkvSBC0c5X1qcztlf3N_zIG5nioVX_70U368vX5v3bvv59rFZb7tDj7p2hISoGdQeFAE5Ur2dFPrJeBjQWdCovAVjvXI0jQhG97BnzzAA4sSwFI9X74Ei70Kacz03jSPPx-By4jk0voax761GY-EXxDFGbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distillation end point estimation in diesel fuel production</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mohler, I ; Andrijic, Z. Ujevic ; Bolf, N ; Galinec, G</creator><creatorcontrib>Mohler, I ; Andrijic, Z. Ujevic ; Bolf, N ; Galinec, G</creatorcontrib><description>Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the model identification are generated by Multivariate Adaptive Regression Splines (MARSplines). Soft sensors are developed using different linear and nonlinear identification methods. Among the variety of dynamic models, the best results are achieved with Box Jenkins (BJ), Output Error (OE) and Hammerstein-Wiener (HW) model. Developed models were evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE), mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes show BJ model. For continuous estimation of D95, OE and HW models can be used. Key words: Crude distillation unit, distillation end point, soft sensor, identification</description><identifier>ISSN: 0352-9568</identifier><language>eng</language><publisher>Croatian Association of Chemical Engineers</publisher><subject>Chemical properties ; Chemical research ; Diesel fuels ; Distillation ; Production processes</subject><ispartof>Chemical and biochemical engineering quarterly, 2013-06, Vol.27 (2), p.125</ispartof><rights>COPYRIGHT 2013 Croatian Association of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Mohler, I</creatorcontrib><creatorcontrib>Andrijic, Z. Ujevic</creatorcontrib><creatorcontrib>Bolf, N</creatorcontrib><creatorcontrib>Galinec, G</creatorcontrib><title>Distillation end point estimation in diesel fuel production</title><title>Chemical and biochemical engineering quarterly</title><description>Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the model identification are generated by Multivariate Adaptive Regression Splines (MARSplines). Soft sensors are developed using different linear and nonlinear identification methods. Among the variety of dynamic models, the best results are achieved with Box Jenkins (BJ), Output Error (OE) and Hammerstein-Wiener (HW) model. Developed models were evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE), mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes show BJ model. For continuous estimation of D95, OE and HW models can be used. Key words: Crude distillation unit, distillation end point, soft sensor, identification</description><subject>Chemical properties</subject><subject>Chemical research</subject><subject>Diesel fuels</subject><subject>Distillation</subject><subject>Production processes</subject><issn>0352-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjM1qAyEUhV200DTNO_gCU5y5OuOlq5D-QqCbdh1u9E6wGA3RvH8t6eYcznfguxELBWbo0Iz2TtyX8qPaBqsW4uk5lBpipBpykpy8POWQquRGj1cYkvSBC0c5X1qcztlf3N_zIG5nioVX_70U368vX5v3bvv59rFZb7tDj7p2hISoGdQeFAE5Ur2dFPrJeBjQWdCovAVjvXI0jQhG97BnzzAA4sSwFI9X74Ei70Kacz03jSPPx-By4jk0voax761GY-EXxDFGbQ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Mohler, I</creator><creator>Andrijic, Z. Ujevic</creator><creator>Bolf, N</creator><creator>Galinec, G</creator><general>Croatian Association of Chemical Engineers</general><scope/></search><sort><creationdate>20130601</creationdate><title>Distillation end point estimation in diesel fuel production</title><author>Mohler, I ; Andrijic, Z. Ujevic ; Bolf, N ; Galinec, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g194t-a9a994e30b30a3aca018709d75d329c83490d8358d0ca76935413bede323997e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical properties</topic><topic>Chemical research</topic><topic>Diesel fuels</topic><topic>Distillation</topic><topic>Production processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohler, I</creatorcontrib><creatorcontrib>Andrijic, Z. Ujevic</creatorcontrib><creatorcontrib>Bolf, N</creatorcontrib><creatorcontrib>Galinec, G</creatorcontrib><jtitle>Chemical and biochemical engineering quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohler, I</au><au>Andrijic, Z. Ujevic</au><au>Bolf, N</au><au>Galinec, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distillation end point estimation in diesel fuel production</atitle><jtitle>Chemical and biochemical engineering quarterly</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>27</volume><issue>2</issue><spage>125</spage><pages>125-</pages><issn>0352-9568</issn><abstract>Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95) in crude distillation unit (CDU) are developed. Experimental data are acquired from the refinery distributed control system (DCS) and include on-line available continuously measured variables and laboratory data which are consistently sampled four times a day. Additional laboratory data of kerosene D95 for the model identification are generated by Multivariate Adaptive Regression Splines (MARSplines). Soft sensors are developed using different linear and nonlinear identification methods. Among the variety of dynamic models, the best results are achieved with Box Jenkins (BJ), Output Error (OE) and Hammerstein-Wiener (HW) model. Developed models were evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE), mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes show BJ model. For continuous estimation of D95, OE and HW models can be used. Key words: Crude distillation unit, distillation end point, soft sensor, identification</abstract><pub>Croatian Association of Chemical Engineers</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0352-9568 |
ispartof | Chemical and biochemical engineering quarterly, 2013-06, Vol.27 (2), p.125 |
issn | 0352-9568 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A361184958 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Chemical properties Chemical research Diesel fuels Distillation Production processes |
title | Distillation end point estimation in diesel fuel production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distillation%20end%20point%20estimation%20in%20diesel%20fuel%20production&rft.jtitle=Chemical%20and%20biochemical%20engineering%20quarterly&rft.au=Mohler,%20I&rft.date=2013-06-01&rft.volume=27&rft.issue=2&rft.spage=125&rft.pages=125-&rft.issn=0352-9568&rft_id=info:doi/&rft_dat=%3Cgale%3EA361184958%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A361184958&rfr_iscdi=true |