Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening

A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2012, Vol.54 (8), p.867-884
Hauptverfasser: Koneva, N. A., Trishkina, L. I., Kozlov, É. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 884
container_issue 8
container_start_page 867
container_title Russian physics journal
container_volume 54
creator Koneva, N. A.
Trishkina, L. I.
Kozlov, É. V.
description A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws.
doi_str_mv 10.1007/s11182-011-9695-z
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A359334885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359334885</galeid><sourcerecordid>A359334885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f4b8cedb802fc33d0139d2158967eff75f3f174c1e1399bf0f39bd94a52682af3</originalsourceid><addsrcrecordid>eNp9kdtOAyEQhjdGE2v1AbzjAbrKYQ_gndl4Spp4o9eE5VAxFBRYTfsUPrK09dpMwkxgvvmH_FV1ieAVgrC_TgghimuIUM061tbbo2qG2p7UDGN6XGrYNTWltD-tzlJ6h7BQXT-rfgbt3OREBMomF6TINniQpjHlOMk8RQ2sBx_BbWTcpCxcAsGA-2EAKTirdue0Q9IN-JyEzzaXCV8ayDcRhcw62pStTAvgxPceNSGu9yILILwCMbi9QmlX2lu_Oq9OTFHRF395Xr3e370Mj_Xy-eFpuF3WkuA-16YZqdRqpBAbSYiCiDCFUUtZ12tj-tYQg_pGIl0e2GigIWxUrBEt7igWhsyrq8PclXCaW29CLguXUHptZfDa2HJ_S1pGSENpWwB0AGQMKUVt-Ee0axE3HEG-84AfPODFA77zgG8Lgw9MKr1-pSN_D1P05V__QL88PY6G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening</title><source>Springer Nature - Complete Springer Journals</source><creator>Koneva, N. A. ; Trishkina, L. I. ; Kozlov, É. V.</creator><creatorcontrib>Koneva, N. A. ; Trishkina, L. I. ; Kozlov, É. V.</creatorcontrib><description>A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-011-9695-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Condensed Matter Physics ; Hadrons ; Heavy Ions ; Lasers ; Laws, regulations and rules ; Mathematical and Computational Physics ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Solid solutions ; Telecommunication ; Theoretical</subject><ispartof>Russian physics journal, 2012, Vol.54 (8), p.867-884</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f4b8cedb802fc33d0139d2158967eff75f3f174c1e1399bf0f39bd94a52682af3</citedby><cites>FETCH-LOGICAL-c327t-f4b8cedb802fc33d0139d2158967eff75f3f174c1e1399bf0f39bd94a52682af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-011-9695-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-011-9695-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Koneva, N. A.</creatorcontrib><creatorcontrib>Trishkina, L. I.</creatorcontrib><creatorcontrib>Kozlov, É. V.</creatorcontrib><title>Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws.</description><subject>Alloys</subject><subject>Condensed Matter Physics</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Laws, regulations and rules</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid solutions</subject><subject>Telecommunication</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kdtOAyEQhjdGE2v1AbzjAbrKYQ_gndl4Spp4o9eE5VAxFBRYTfsUPrK09dpMwkxgvvmH_FV1ieAVgrC_TgghimuIUM061tbbo2qG2p7UDGN6XGrYNTWltD-tzlJ6h7BQXT-rfgbt3OREBMomF6TINniQpjHlOMk8RQ2sBx_BbWTcpCxcAsGA-2EAKTirdue0Q9IN-JyEzzaXCV8ayDcRhcw62pStTAvgxPceNSGu9yILILwCMbi9QmlX2lu_Oq9OTFHRF395Xr3e370Mj_Xy-eFpuF3WkuA-16YZqdRqpBAbSYiCiDCFUUtZ12tj-tYQg_pGIl0e2GigIWxUrBEt7igWhsyrq8PclXCaW29CLguXUHptZfDa2HJ_S1pGSENpWwB0AGQMKUVt-Ee0axE3HEG-84AfPODFA77zgG8Lgw9MKr1-pSN_D1P05V__QL88PY6G</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Koneva, N. A.</creator><creator>Trishkina, L. I.</creator><creator>Kozlov, É. V.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening</title><author>Koneva, N. A. ; Trishkina, L. I. ; Kozlov, É. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f4b8cedb802fc33d0139d2158967eff75f3f174c1e1399bf0f39bd94a52682af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Condensed Matter Physics</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Laws, regulations and rules</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid solutions</topic><topic>Telecommunication</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koneva, N. A.</creatorcontrib><creatorcontrib>Trishkina, L. I.</creatorcontrib><creatorcontrib>Kozlov, É. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koneva, N. A.</au><au>Trishkina, L. I.</au><au>Kozlov, É. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2012</date><risdate>2012</risdate><volume>54</volume><issue>8</issue><spage>867</spage><epage>884</epage><pages>867-884</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11182-011-9695-z</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2012, Vol.54 (8), p.867-884
issn 1064-8887
1573-9228
language eng
recordid cdi_gale_infotracacademiconefile_A359334885
source Springer Nature - Complete Springer Journals
subjects Alloys
Condensed Matter Physics
Hadrons
Heavy Ions
Lasers
Laws, regulations and rules
Mathematical and Computational Physics
Nuclear Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Solid solutions
Telecommunication
Theoretical
title Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20dislocation%20substructure%20in%20polycrystals%20of%20FCC%20solid%20solutions:%20quantitative%20characteristics,%20laws%20of%20formation,%20and%20role%20in%20hardening&rft.jtitle=Russian%20physics%20journal&rft.au=Koneva,%20N.%20A.&rft.date=2012&rft.volume=54&rft.issue=8&rft.spage=867&rft.epage=884&rft.pages=867-884&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-011-9695-z&rft_dat=%3Cgale_cross%3EA359334885%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A359334885&rfr_iscdi=true