Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening
A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temper...
Gespeichert in:
Veröffentlicht in: | Russian physics journal 2012, Vol.54 (8), p.867-884 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 884 |
---|---|
container_issue | 8 |
container_start_page | 867 |
container_title | Russian physics journal |
container_volume | 54 |
creator | Koneva, N. A. Trishkina, L. I. Kozlov, É. V. |
description | A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws. |
doi_str_mv | 10.1007/s11182-011-9695-z |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A359334885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359334885</galeid><sourcerecordid>A359334885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f4b8cedb802fc33d0139d2158967eff75f3f174c1e1399bf0f39bd94a52682af3</originalsourceid><addsrcrecordid>eNp9kdtOAyEQhjdGE2v1AbzjAbrKYQ_gndl4Spp4o9eE5VAxFBRYTfsUPrK09dpMwkxgvvmH_FV1ieAVgrC_TgghimuIUM061tbbo2qG2p7UDGN6XGrYNTWltD-tzlJ6h7BQXT-rfgbt3OREBMomF6TINniQpjHlOMk8RQ2sBx_BbWTcpCxcAsGA-2EAKTirdue0Q9IN-JyEzzaXCV8ayDcRhcw62pStTAvgxPceNSGu9yILILwCMbi9QmlX2lu_Oq9OTFHRF395Xr3e370Mj_Xy-eFpuF3WkuA-16YZqdRqpBAbSYiCiDCFUUtZ12tj-tYQg_pGIl0e2GigIWxUrBEt7igWhsyrq8PclXCaW29CLguXUHptZfDa2HJ_S1pGSENpWwB0AGQMKUVt-Ee0axE3HEG-84AfPODFA77zgG8Lgw9MKr1-pSN_D1P05V__QL88PY6G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening</title><source>Springer Nature - Complete Springer Journals</source><creator>Koneva, N. A. ; Trishkina, L. I. ; Kozlov, É. V.</creator><creatorcontrib>Koneva, N. A. ; Trishkina, L. I. ; Kozlov, É. V.</creatorcontrib><description>A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-011-9695-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Condensed Matter Physics ; Hadrons ; Heavy Ions ; Lasers ; Laws, regulations and rules ; Mathematical and Computational Physics ; Nuclear Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Solid solutions ; Telecommunication ; Theoretical</subject><ispartof>Russian physics journal, 2012, Vol.54 (8), p.867-884</ispartof><rights>Springer Science+Business Media, Inc. 2011</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f4b8cedb802fc33d0139d2158967eff75f3f174c1e1399bf0f39bd94a52682af3</citedby><cites>FETCH-LOGICAL-c327t-f4b8cedb802fc33d0139d2158967eff75f3f174c1e1399bf0f39bd94a52682af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-011-9695-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-011-9695-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Koneva, N. A.</creatorcontrib><creatorcontrib>Trishkina, L. I.</creatorcontrib><creatorcontrib>Kozlov, É. V.</creatorcontrib><title>Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws.</description><subject>Alloys</subject><subject>Condensed Matter Physics</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Laws, regulations and rules</subject><subject>Mathematical and Computational Physics</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solid solutions</subject><subject>Telecommunication</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kdtOAyEQhjdGE2v1AbzjAbrKYQ_gndl4Spp4o9eE5VAxFBRYTfsUPrK09dpMwkxgvvmH_FV1ieAVgrC_TgghimuIUM061tbbo2qG2p7UDGN6XGrYNTWltD-tzlJ6h7BQXT-rfgbt3OREBMomF6TINniQpjHlOMk8RQ2sBx_BbWTcpCxcAsGA-2EAKTirdue0Q9IN-JyEzzaXCV8ayDcRhcw62pStTAvgxPceNSGu9yILILwCMbi9QmlX2lu_Oq9OTFHRF395Xr3e370Mj_Xy-eFpuF3WkuA-16YZqdRqpBAbSYiCiDCFUUtZ12tj-tYQg_pGIl0e2GigIWxUrBEt7igWhsyrq8PclXCaW29CLguXUHptZfDa2HJ_S1pGSENpWwB0AGQMKUVt-Ee0axE3HEG-84AfPODFA77zgG8Lgw9MKr1-pSN_D1P05V__QL88PY6G</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Koneva, N. A.</creator><creator>Trishkina, L. I.</creator><creator>Kozlov, É. V.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2012</creationdate><title>Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening</title><author>Koneva, N. A. ; Trishkina, L. I. ; Kozlov, É. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f4b8cedb802fc33d0139d2158967eff75f3f174c1e1399bf0f39bd94a52682af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Condensed Matter Physics</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Laws, regulations and rules</topic><topic>Mathematical and Computational Physics</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solid solutions</topic><topic>Telecommunication</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koneva, N. A.</creatorcontrib><creatorcontrib>Trishkina, L. I.</creatorcontrib><creatorcontrib>Kozlov, É. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koneva, N. A.</au><au>Trishkina, L. I.</au><au>Kozlov, É. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2012</date><risdate>2012</risdate><volume>54</volume><issue>8</issue><spage>867</spage><epage>884</epage><pages>867-884</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>A cycle of investigations carried out by the authors and devoted to the most important cellular dislocation substructure is generalized. Laws of formation of this substructure upon plastic strain of FCC Cu–Mn and Cu–Al alloy polycrystals are considered. The influence of the grain size, strain temperature, and alloy concentration on the parameters of evolving cellular dislocation substructures (DSS) is quantitatively analyzed by the transmission electron microscopy (TEM) method. Special attention is given to the kinetic phase transition in the defect subsystem leading to the formation of the cellular DSS. Based on modern dislocation models, it is demonstrated that hardening by the cellular DSS obeys the main dislocation laws.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11182-011-9695-z</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8887 |
ispartof | Russian physics journal, 2012, Vol.54 (8), p.867-884 |
issn | 1064-8887 1573-9228 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A359334885 |
source | Springer Nature - Complete Springer Journals |
subjects | Alloys Condensed Matter Physics Hadrons Heavy Ions Lasers Laws, regulations and rules Mathematical and Computational Physics Nuclear Physics Optical Devices Optics Photonics Physics Physics and Astronomy Solid solutions Telecommunication Theoretical |
title | Cellular dislocation substructure in polycrystals of FCC solid solutions: quantitative characteristics, laws of formation, and role in hardening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A56%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellular%20dislocation%20substructure%20in%20polycrystals%20of%20FCC%20solid%20solutions:%20quantitative%20characteristics,%20laws%20of%20formation,%20and%20role%20in%20hardening&rft.jtitle=Russian%20physics%20journal&rft.au=Koneva,%20N.%20A.&rft.date=2012&rft.volume=54&rft.issue=8&rft.spage=867&rft.epage=884&rft.pages=867-884&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-011-9695-z&rft_dat=%3Cgale_cross%3EA359334885%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A359334885&rfr_iscdi=true |