Thermal transitions and dynamics in nanocomposite hydrogels

Hydrogels based on nanocomposites of statistical poly(hydroxyethyl acrylate- co -ethyl acrylate) and silica, prepared by simultaneous copolymerization and generation of silica nanoparticles by sol–gel process at various copolymer compositions and silica contents, characterized by a fine dispersion o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2012-06, Vol.108 (3), p.1067-1078
Hauptverfasser: Kyritsis, A., Spanoudaki, A., Pandis, C., Hartmann, L., Pelster, R., Shinyashiki, N., Rodríguez Hernández, J. C., Gómez Ribelles, J. L., Monleón Pradas, M., Pissis, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1078
container_issue 3
container_start_page 1067
container_title Journal of thermal analysis and calorimetry
container_volume 108
creator Kyritsis, A.
Spanoudaki, A.
Pandis, C.
Hartmann, L.
Pelster, R.
Shinyashiki, N.
Rodríguez Hernández, J. C.
Gómez Ribelles, J. L.
Monleón Pradas, M.
Pissis, P.
description Hydrogels based on nanocomposites of statistical poly(hydroxyethyl acrylate- co -ethyl acrylate) and silica, prepared by simultaneous copolymerization and generation of silica nanoparticles by sol–gel process at various copolymer compositions and silica contents, characterized by a fine dispersion of filler, were investigated with respect to glass transition and polymer dynamics by dielectric techniques. These include thermally stimulated depolarization currents and dielectric relaxation spectroscopy, covering together broad ranges of frequency and temperature. In addition, equilibrium water sorption isotherms were recorded at room temperature (25 °C). Special attention was paid to the investigation of effects of silica on glass transition, polymer dynamics (secondary γ and β sw relaxations and segmental α relaxation), and electrical conductivity in the dry systems (xerogels) and in the hydrogels at various levels of relative humidity/water content. An overall reduction of molecular mobility is observed in the nanocomposite xerogels, in particular at high silica contents. Analysis of the results and comparison with previous work on similar systems enable to discuss this reduction of molecular mobility in terms of constraints to polymeric motion imposed by interfacial polymer–filler interactions and by the formation of a continuous silica network interpenetrated with the polymer network at filler contents higher than about 15 wt%.
doi_str_mv 10.1007/s10973-011-2093-5
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A359084544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A359084544</galeid><sourcerecordid>A359084544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-aa57bf323a11b085b8d11009a10e2562727d8c5f97d3917fd62475ed2c4397353</originalsourceid><addsrcrecordid>eNp9kE9rwyAYh2VssNL1A-yW6w7pfDXGyE6l7E-hMNi6s5hoUkeiRVNYv_0s2aWX4cEXeX7yex-E7gEvAWP-GAELTnMMkBMsaM6u0AxYVeVEkPI6zTTNJTB8ixYx2hoTwKVglZihp93ehEH12RiUi3a03sVMOZ3pk1ODbWJmXeaU840fDj4BJtufdPCd6eMdumlVH83i756jr5fn3fot376_btarbd4UhI-5UozXLSVUAdS4YnWlIdUWCrAhrCSccF01rBVcUwG81SUpODOaNAVNazE6R8vp3071RlrX-lS2SUeb1NA709r0vqJM4KpgRZECDxeBxIzmZ-zUMUa5-fy4ZGFim-BjDKaVh2AHFU4SsDzblZNdmezKs115LkSmTEys60yQ3_4YXHLwT-gX8hJ7BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal transitions and dynamics in nanocomposite hydrogels</title><source>SpringerLink_现刊</source><creator>Kyritsis, A. ; Spanoudaki, A. ; Pandis, C. ; Hartmann, L. ; Pelster, R. ; Shinyashiki, N. ; Rodríguez Hernández, J. C. ; Gómez Ribelles, J. L. ; Monleón Pradas, M. ; Pissis, P.</creator><creatorcontrib>Kyritsis, A. ; Spanoudaki, A. ; Pandis, C. ; Hartmann, L. ; Pelster, R. ; Shinyashiki, N. ; Rodríguez Hernández, J. C. ; Gómez Ribelles, J. L. ; Monleón Pradas, M. ; Pissis, P.</creatorcontrib><description>Hydrogels based on nanocomposites of statistical poly(hydroxyethyl acrylate- co -ethyl acrylate) and silica, prepared by simultaneous copolymerization and generation of silica nanoparticles by sol–gel process at various copolymer compositions and silica contents, characterized by a fine dispersion of filler, were investigated with respect to glass transition and polymer dynamics by dielectric techniques. These include thermally stimulated depolarization currents and dielectric relaxation spectroscopy, covering together broad ranges of frequency and temperature. In addition, equilibrium water sorption isotherms were recorded at room temperature (25 °C). Special attention was paid to the investigation of effects of silica on glass transition, polymer dynamics (secondary γ and β sw relaxations and segmental α relaxation), and electrical conductivity in the dry systems (xerogels) and in the hydrogels at various levels of relative humidity/water content. An overall reduction of molecular mobility is observed in the nanocomposite xerogels, in particular at high silica contents. Analysis of the results and comparison with previous work on similar systems enable to discuss this reduction of molecular mobility in terms of constraints to polymeric motion imposed by interfacial polymer–filler interactions and by the formation of a continuous silica network interpenetrated with the polymer network at filler contents higher than about 15 wt%.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>EISSN: 1572-8943</identifier><identifier>DOI: 10.1007/s10973-011-2093-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Electric properties ; Electrical conductivity ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Nanotechnology ; Physical Chemistry ; Polymer Sciences ; Silica</subject><ispartof>Journal of thermal analysis and calorimetry, 2012-06, Vol.108 (3), p.1067-1078</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2011</rights><rights>COPYRIGHT 2012 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-aa57bf323a11b085b8d11009a10e2562727d8c5f97d3917fd62475ed2c4397353</citedby><cites>FETCH-LOGICAL-c427t-aa57bf323a11b085b8d11009a10e2562727d8c5f97d3917fd62475ed2c4397353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-011-2093-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-011-2093-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kyritsis, A.</creatorcontrib><creatorcontrib>Spanoudaki, A.</creatorcontrib><creatorcontrib>Pandis, C.</creatorcontrib><creatorcontrib>Hartmann, L.</creatorcontrib><creatorcontrib>Pelster, R.</creatorcontrib><creatorcontrib>Shinyashiki, N.</creatorcontrib><creatorcontrib>Rodríguez Hernández, J. C.</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L.</creatorcontrib><creatorcontrib>Monleón Pradas, M.</creatorcontrib><creatorcontrib>Pissis, P.</creatorcontrib><title>Thermal transitions and dynamics in nanocomposite hydrogels</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Hydrogels based on nanocomposites of statistical poly(hydroxyethyl acrylate- co -ethyl acrylate) and silica, prepared by simultaneous copolymerization and generation of silica nanoparticles by sol–gel process at various copolymer compositions and silica contents, characterized by a fine dispersion of filler, were investigated with respect to glass transition and polymer dynamics by dielectric techniques. These include thermally stimulated depolarization currents and dielectric relaxation spectroscopy, covering together broad ranges of frequency and temperature. In addition, equilibrium water sorption isotherms were recorded at room temperature (25 °C). Special attention was paid to the investigation of effects of silica on glass transition, polymer dynamics (secondary γ and β sw relaxations and segmental α relaxation), and electrical conductivity in the dry systems (xerogels) and in the hydrogels at various levels of relative humidity/water content. An overall reduction of molecular mobility is observed in the nanocomposite xerogels, in particular at high silica contents. Analysis of the results and comparison with previous work on similar systems enable to discuss this reduction of molecular mobility in terms of constraints to polymeric motion imposed by interfacial polymer–filler interactions and by the formation of a continuous silica network interpenetrated with the polymer network at filler contents higher than about 15 wt%.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanotechnology</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Silica</subject><issn>1388-6150</issn><issn>1588-2926</issn><issn>1572-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rwyAYh2VssNL1A-yW6w7pfDXGyE6l7E-hMNi6s5hoUkeiRVNYv_0s2aWX4cEXeX7yex-E7gEvAWP-GAELTnMMkBMsaM6u0AxYVeVEkPI6zTTNJTB8ixYx2hoTwKVglZihp93ehEH12RiUi3a03sVMOZ3pk1ODbWJmXeaU840fDj4BJtufdPCd6eMdumlVH83i756jr5fn3fot376_btarbd4UhI-5UozXLSVUAdS4YnWlIdUWCrAhrCSccF01rBVcUwG81SUpODOaNAVNazE6R8vp3071RlrX-lS2SUeb1NA709r0vqJM4KpgRZECDxeBxIzmZ-zUMUa5-fy4ZGFim-BjDKaVh2AHFU4SsDzblZNdmezKs115LkSmTEys60yQ3_4YXHLwT-gX8hJ7BQ</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Kyritsis, A.</creator><creator>Spanoudaki, A.</creator><creator>Pandis, C.</creator><creator>Hartmann, L.</creator><creator>Pelster, R.</creator><creator>Shinyashiki, N.</creator><creator>Rodríguez Hernández, J. C.</creator><creator>Gómez Ribelles, J. L.</creator><creator>Monleón Pradas, M.</creator><creator>Pissis, P.</creator><general>Springer Netherlands</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20120601</creationdate><title>Thermal transitions and dynamics in nanocomposite hydrogels</title><author>Kyritsis, A. ; Spanoudaki, A. ; Pandis, C. ; Hartmann, L. ; Pelster, R. ; Shinyashiki, N. ; Rodríguez Hernández, J. C. ; Gómez Ribelles, J. L. ; Monleón Pradas, M. ; Pissis, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-aa57bf323a11b085b8d11009a10e2562727d8c5f97d3917fd62475ed2c4397353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanotechnology</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Silica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyritsis, A.</creatorcontrib><creatorcontrib>Spanoudaki, A.</creatorcontrib><creatorcontrib>Pandis, C.</creatorcontrib><creatorcontrib>Hartmann, L.</creatorcontrib><creatorcontrib>Pelster, R.</creatorcontrib><creatorcontrib>Shinyashiki, N.</creatorcontrib><creatorcontrib>Rodríguez Hernández, J. C.</creatorcontrib><creatorcontrib>Gómez Ribelles, J. L.</creatorcontrib><creatorcontrib>Monleón Pradas, M.</creatorcontrib><creatorcontrib>Pissis, P.</creatorcontrib><collection>CrossRef</collection><collection>Science (Gale in Context)</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyritsis, A.</au><au>Spanoudaki, A.</au><au>Pandis, C.</au><au>Hartmann, L.</au><au>Pelster, R.</au><au>Shinyashiki, N.</au><au>Rodríguez Hernández, J. C.</au><au>Gómez Ribelles, J. L.</au><au>Monleón Pradas, M.</au><au>Pissis, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal transitions and dynamics in nanocomposite hydrogels</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>108</volume><issue>3</issue><spage>1067</spage><epage>1078</epage><pages>1067-1078</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><eissn>1572-8943</eissn><abstract>Hydrogels based on nanocomposites of statistical poly(hydroxyethyl acrylate- co -ethyl acrylate) and silica, prepared by simultaneous copolymerization and generation of silica nanoparticles by sol–gel process at various copolymer compositions and silica contents, characterized by a fine dispersion of filler, were investigated with respect to glass transition and polymer dynamics by dielectric techniques. These include thermally stimulated depolarization currents and dielectric relaxation spectroscopy, covering together broad ranges of frequency and temperature. In addition, equilibrium water sorption isotherms were recorded at room temperature (25 °C). Special attention was paid to the investigation of effects of silica on glass transition, polymer dynamics (secondary γ and β sw relaxations and segmental α relaxation), and electrical conductivity in the dry systems (xerogels) and in the hydrogels at various levels of relative humidity/water content. An overall reduction of molecular mobility is observed in the nanocomposite xerogels, in particular at high silica contents. Analysis of the results and comparison with previous work on similar systems enable to discuss this reduction of molecular mobility in terms of constraints to polymeric motion imposed by interfacial polymer–filler interactions and by the formation of a continuous silica network interpenetrated with the polymer network at filler contents higher than about 15 wt%.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-011-2093-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2012-06, Vol.108 (3), p.1067-1078
issn 1388-6150
1588-2926
1572-8943
language eng
recordid cdi_gale_infotracacademiconefile_A359084544
source SpringerLink_现刊
subjects Analysis
Analytical Chemistry
Chemistry
Chemistry and Materials Science
Electric properties
Electrical conductivity
Inorganic Chemistry
Measurement Science and Instrumentation
Nanotechnology
Physical Chemistry
Polymer Sciences
Silica
title Thermal transitions and dynamics in nanocomposite hydrogels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20transitions%20and%20dynamics%20in%20nanocomposite%20hydrogels&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Kyritsis,%20A.&rft.date=2012-06-01&rft.volume=108&rft.issue=3&rft.spage=1067&rft.epage=1078&rft.pages=1067-1078&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-011-2093-5&rft_dat=%3Cgale_cross%3EA359084544%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A359084544&rfr_iscdi=true