Universality Under Conditions of Self-tuning

We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2010-10, Vol.141 (1), p.53-59
Hauptverfasser: Peters, Ole, Girvan, Michelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 53
container_title Journal of statistical physics
container_volume 141
creator Peters, Ole
Girvan, Michelle
description We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not.
doi_str_mv 10.1007/s10955-010-0039-0
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A358315533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358315533</galeid><sourcerecordid>A358315533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-b64c8f1ee09a501551929aa996e3d67033a3dfa03856edb3c08cf1ae7497a8163</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNv-AKMzm2Z3cyzFLyh40J5Dmp2UlG0iyVbovzdlPcscBob3eWEexu4RHhGgfcoISkoOCBxAKA4XbIayrblqUFyyGUBd80WL8prd5LwHANUpOWMPm-B_KGUz-PFUbUJPqVrF0PvRx5Cr6KpPGhwfj8GH3S27cmbIdPe352zz8vy1euPrj9f31XLNbd2qkW-bhe0cEoEyElBKVLUyRqmGRN-0IIQRvTMgOtlQvxUWOuvQULtQremwEXP2OPXuzEDaBxfHZGyZng7exkDOl_tSyE6UdiEKgBNgU8w5kdPfyR9MOmkEffajJz-6-NFnPxoKU09MLtmwo6T38ZhC-esf6BeoZmbW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universality Under Conditions of Self-tuning</title><source>Springer Online Journals Complete</source><creator>Peters, Ole ; Girvan, Michelle</creator><creatorcontrib>Peters, Ole ; Girvan, Michelle</creatorcontrib><description>We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-010-0039-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2010-10, Vol.141 (1), p.53-59</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-b64c8f1ee09a501551929aa996e3d67033a3dfa03856edb3c08cf1ae7497a8163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-010-0039-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-010-0039-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Peters, Ole</creatorcontrib><creatorcontrib>Girvan, Michelle</creatorcontrib><title>Universality Under Conditions of Self-tuning</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNv-AKMzm2Z3cyzFLyh40J5Dmp2UlG0iyVbovzdlPcscBob3eWEexu4RHhGgfcoISkoOCBxAKA4XbIayrblqUFyyGUBd80WL8prd5LwHANUpOWMPm-B_KGUz-PFUbUJPqVrF0PvRx5Cr6KpPGhwfj8GH3S27cmbIdPe352zz8vy1euPrj9f31XLNbd2qkW-bhe0cEoEyElBKVLUyRqmGRN-0IIQRvTMgOtlQvxUWOuvQULtQremwEXP2OPXuzEDaBxfHZGyZng7exkDOl_tSyE6UdiEKgBNgU8w5kdPfyR9MOmkEffajJz-6-NFnPxoKU09MLtmwo6T38ZhC-esf6BeoZmbW</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Peters, Ole</creator><creator>Girvan, Michelle</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101001</creationdate><title>Universality Under Conditions of Self-tuning</title><author>Peters, Ole ; Girvan, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-b64c8f1ee09a501551929aa996e3d67033a3dfa03856edb3c08cf1ae7497a8163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Ole</creatorcontrib><creatorcontrib>Girvan, Michelle</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Ole</au><au>Girvan, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universality Under Conditions of Self-tuning</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>141</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-010-0039-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2010-10, Vol.141 (1), p.53-59
issn 0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A358315533
source Springer Online Journals Complete
subjects Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Universality Under Conditions of Self-tuning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universality%20Under%20Conditions%20of%20Self-tuning&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Peters,%20Ole&rft.date=2010-10-01&rft.volume=141&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-010-0039-0&rft_dat=%3Cgale_cross%3EA358315533%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A358315533&rfr_iscdi=true