Universality Under Conditions of Self-tuning
We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant pa...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2010-10, Vol.141 (1), p.53-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Journal of statistical physics |
container_volume | 141 |
creator | Peters, Ole Girvan, Michelle |
description | We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not. |
doi_str_mv | 10.1007/s10955-010-0039-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A358315533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A358315533</galeid><sourcerecordid>A358315533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-b64c8f1ee09a501551929aa996e3d67033a3dfa03856edb3c08cf1ae7497a8163</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNv-AKMzm2Z3cyzFLyh40J5Dmp2UlG0iyVbovzdlPcscBob3eWEexu4RHhGgfcoISkoOCBxAKA4XbIayrblqUFyyGUBd80WL8prd5LwHANUpOWMPm-B_KGUz-PFUbUJPqVrF0PvRx5Cr6KpPGhwfj8GH3S27cmbIdPe352zz8vy1euPrj9f31XLNbd2qkW-bhe0cEoEyElBKVLUyRqmGRN-0IIQRvTMgOtlQvxUWOuvQULtQremwEXP2OPXuzEDaBxfHZGyZng7exkDOl_tSyE6UdiEKgBNgU8w5kdPfyR9MOmkEffajJz-6-NFnPxoKU09MLtmwo6T38ZhC-esf6BeoZmbW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universality Under Conditions of Self-tuning</title><source>Springer Online Journals Complete</source><creator>Peters, Ole ; Girvan, Michelle</creator><creatorcontrib>Peters, Ole ; Girvan, Michelle</creatorcontrib><description>We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-010-0039-0</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2010-10, Vol.141 (1), p.53-59</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-b64c8f1ee09a501551929aa996e3d67033a3dfa03856edb3c08cf1ae7497a8163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-010-0039-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-010-0039-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Peters, Ole</creatorcontrib><creatorcontrib>Girvan, Michelle</creatorcontrib><title>Universality Under Conditions of Self-tuning</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not.</description><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNv-AKMzm2Z3cyzFLyh40J5Dmp2UlG0iyVbovzdlPcscBob3eWEexu4RHhGgfcoISkoOCBxAKA4XbIayrblqUFyyGUBd80WL8prd5LwHANUpOWMPm-B_KGUz-PFUbUJPqVrF0PvRx5Cr6KpPGhwfj8GH3S27cmbIdPe352zz8vy1euPrj9f31XLNbd2qkW-bhe0cEoEyElBKVLUyRqmGRN-0IIQRvTMgOtlQvxUWOuvQULtQremwEXP2OPXuzEDaBxfHZGyZng7exkDOl_tSyE6UdiEKgBNgU8w5kdPfyR9MOmkEffajJz-6-NFnPxoKU09MLtmwo6T38ZhC-esf6BeoZmbW</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Peters, Ole</creator><creator>Girvan, Michelle</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101001</creationdate><title>Universality Under Conditions of Self-tuning</title><author>Peters, Ole ; Girvan, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-b64c8f1ee09a501551929aa996e3d67033a3dfa03856edb3c08cf1ae7497a8163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peters, Ole</creatorcontrib><creatorcontrib>Girvan, Michelle</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peters, Ole</au><au>Girvan, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universality Under Conditions of Self-tuning</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>141</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We study systems with a continuous phase transition that tune their parameters to maximize a quantity that diverges solely at a unique critical point. Varying the size of these systems with dynamically adjusting parameters, the same finite-size scaling is observed as in systems where all relevant parameters are fixed at their critical values. This scheme is studied using a self-tuning variant of the Ising model. It is contrasted with a scheme where systems approach criticality through a target value for the order parameter that vanishes with increasing system size. In the former scheme, the universal exponents are observed in naïve finite-size scaling studies, whereas in the latter they are not.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-010-0039-0</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2010-10, Vol.141 (1), p.53-59 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A358315533 |
source | Springer Online Journals Complete |
subjects | Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | Universality Under Conditions of Self-tuning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universality%20Under%20Conditions%20of%20Self-tuning&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Peters,%20Ole&rft.date=2010-10-01&rft.volume=141&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-010-0039-0&rft_dat=%3Cgale_cross%3EA358315533%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A358315533&rfr_iscdi=true |