The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line

In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2013, Vol.150 (1), p.1-12
Hauptverfasser: Tracy, Craig A., Widom, Harold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title Journal of statistical physics
container_volume 150
creator Tracy, Craig A.
Widom, Harold
description In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.
doi_str_mv 10.1007/s10955-012-0686-4
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A337369507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337369507</galeid><sourcerecordid>A337369507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7ac93814aa6fc2bc91630ba77de022cb1dbac1c3d3bf371e8823459f1aa6c403</originalsourceid><addsrcrecordid>eNp9kFFLwzAQgIMoOKc_wLf8gcxc0jbN4xxzEwYK7j2kaTIz2nQkHbh_b0Z9lnu447jvuPsQega6AErFSwIqy5JQYIRWdUWKGzSDUjAiK-C3aEYpY6QQUN6jh5SOlFJZy3KG1vtvi1-HZPFGJ6xDi5fp0vd2jN7gL9-fOovXP6Y7Jz8E_BkHY1PCuRwzt9WdIzsf7CO6c7pL9ukvz9H-bb1fbcnuY_O-Wu6I4UyMRGgjeQ2F1pUzrDESKk4bLURr83mmgbbRBgxveeO4AFvXjBeldJABU1A-R4tp7UF3VvnghjFqk6O1vTdDsM7n_pJzwStZUpEBmAATh5SideoUfa_jRQFVV29q8qayN3X1porMsIlJeTYcbFTH4RxDfusf6BfqTW9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line</title><source>SpringerNature Journals</source><creator>Tracy, Craig A. ; Widom, Harold</creator><creatorcontrib>Tracy, Craig A. ; Widom, Harold</creatorcontrib><description>In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-012-0686-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Audio equipment industry ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical ; Toy industry</subject><ispartof>Journal of statistical physics, 2013, Vol.150 (1), p.1-12</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7ac93814aa6fc2bc91630ba77de022cb1dbac1c3d3bf371e8823459f1aa6c403</citedby><cites>FETCH-LOGICAL-c327t-7ac93814aa6fc2bc91630ba77de022cb1dbac1c3d3bf371e8823459f1aa6c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-012-0686-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-012-0686-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tracy, Craig A.</creatorcontrib><creatorcontrib>Widom, Harold</creatorcontrib><title>The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.</description><subject>Audio equipment industry</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Toy industry</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQgIMoOKc_wLf8gcxc0jbN4xxzEwYK7j2kaTIz2nQkHbh_b0Z9lnu447jvuPsQega6AErFSwIqy5JQYIRWdUWKGzSDUjAiK-C3aEYpY6QQUN6jh5SOlFJZy3KG1vtvi1-HZPFGJ6xDi5fp0vd2jN7gL9-fOovXP6Y7Jz8E_BkHY1PCuRwzt9WdIzsf7CO6c7pL9ukvz9H-bb1fbcnuY_O-Wu6I4UyMRGgjeQ2F1pUzrDESKk4bLURr83mmgbbRBgxveeO4AFvXjBeldJABU1A-R4tp7UF3VvnghjFqk6O1vTdDsM7n_pJzwStZUpEBmAATh5SideoUfa_jRQFVV29q8qayN3X1porMsIlJeTYcbFTH4RxDfusf6BfqTW9f</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Tracy, Craig A.</creator><creator>Widom, Harold</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line</title><author>Tracy, Craig A. ; Widom, Harold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7ac93814aa6fc2bc91630ba77de022cb1dbac1c3d3bf371e8823459f1aa6c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Audio equipment industry</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Toy industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tracy, Craig A.</creatorcontrib><creatorcontrib>Widom, Harold</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tracy, Craig A.</au><au>Widom, Harold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2013</date><risdate>2013</risdate><volume>150</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-012-0686-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2013, Vol.150 (1), p.1-12
issn 0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A337369507
source SpringerNature Journals
subjects Audio equipment industry
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
Toy industry
title The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bose%20Gas%20and%20Asymmetric%20Simple%20Exclusion%20Process%20on%20the%20Half-Line&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Tracy,%20Craig%20A.&rft.date=2013&rft.volume=150&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-012-0686-4&rft_dat=%3Cgale_cross%3EA337369507%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A337369507&rfr_iscdi=true