The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line
In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP)...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2013, Vol.150 (1), p.1-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of statistical physics |
container_volume | 150 |
creator | Tracy, Craig A. Widom, Harold |
description | In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas. |
doi_str_mv | 10.1007/s10955-012-0686-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A337369507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337369507</galeid><sourcerecordid>A337369507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-7ac93814aa6fc2bc91630ba77de022cb1dbac1c3d3bf371e8823459f1aa6c403</originalsourceid><addsrcrecordid>eNp9kFFLwzAQgIMoOKc_wLf8gcxc0jbN4xxzEwYK7j2kaTIz2nQkHbh_b0Z9lnu447jvuPsQega6AErFSwIqy5JQYIRWdUWKGzSDUjAiK-C3aEYpY6QQUN6jh5SOlFJZy3KG1vtvi1-HZPFGJ6xDi5fp0vd2jN7gL9-fOovXP6Y7Jz8E_BkHY1PCuRwzt9WdIzsf7CO6c7pL9ukvz9H-bb1fbcnuY_O-Wu6I4UyMRGgjeQ2F1pUzrDESKk4bLURr83mmgbbRBgxveeO4AFvXjBeldJABU1A-R4tp7UF3VvnghjFqk6O1vTdDsM7n_pJzwStZUpEBmAATh5SideoUfa_jRQFVV29q8qayN3X1porMsIlJeTYcbFTH4RxDfusf6BfqTW9f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line</title><source>SpringerNature Journals</source><creator>Tracy, Craig A. ; Widom, Harold</creator><creatorcontrib>Tracy, Craig A. ; Widom, Harold</creatorcontrib><description>In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-012-0686-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Audio equipment industry ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical ; Toy industry</subject><ispartof>Journal of statistical physics, 2013, Vol.150 (1), p.1-12</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-7ac93814aa6fc2bc91630ba77de022cb1dbac1c3d3bf371e8823459f1aa6c403</citedby><cites>FETCH-LOGICAL-c327t-7ac93814aa6fc2bc91630ba77de022cb1dbac1c3d3bf371e8823459f1aa6c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-012-0686-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-012-0686-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tracy, Craig A.</creatorcontrib><creatorcontrib>Widom, Harold</creatorcontrib><title>The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.</description><subject>Audio equipment industry</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Toy industry</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQgIMoOKc_wLf8gcxc0jbN4xxzEwYK7j2kaTIz2nQkHbh_b0Z9lnu447jvuPsQega6AErFSwIqy5JQYIRWdUWKGzSDUjAiK-C3aEYpY6QQUN6jh5SOlFJZy3KG1vtvi1-HZPFGJ6xDi5fp0vd2jN7gL9-fOovXP6Y7Jz8E_BkHY1PCuRwzt9WdIzsf7CO6c7pL9ukvz9H-bb1fbcnuY_O-Wu6I4UyMRGgjeQ2F1pUzrDESKk4bLURr83mmgbbRBgxveeO4AFvXjBeldJABU1A-R4tp7UF3VvnghjFqk6O1vTdDsM7n_pJzwStZUpEBmAATh5SideoUfa_jRQFVV29q8qayN3X1porMsIlJeTYcbFTH4RxDfusf6BfqTW9f</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Tracy, Craig A.</creator><creator>Widom, Harold</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2013</creationdate><title>The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line</title><author>Tracy, Craig A. ; Widom, Harold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-7ac93814aa6fc2bc91630ba77de022cb1dbac1c3d3bf371e8823459f1aa6c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Audio equipment industry</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Toy industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tracy, Craig A.</creatorcontrib><creatorcontrib>Widom, Harold</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tracy, Craig A.</au><au>Widom, Harold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2013</date><risdate>2013</risdate><volume>150</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>In this paper we find explicit formulas for: (1) Green’s function for a system of one-dimensional bosons interacting via a delta-function potential with particles confined to the positive half-line; and (2) the transition probability for the one-dimensional asymmetric simple exclusion process (ASEP) with particles confined to the nonnegative integers. These are both for systems with a finite number of particles. The formulas are analogous to ones obtained earlier for the Bose gas and ASEP on the line and integers, respectively. We use coordinate Bethe Ansatz appropriately modified to account for confinement of the particles to the half-line. As in the earlier work, the proof for the ASEP is less straightforward than for the Bose gas.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-012-0686-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2013, Vol.150 (1), p.1-12 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A337369507 |
source | SpringerNature Journals |
subjects | Audio equipment industry Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical Toy industry |
title | The Bose Gas and Asymmetric Simple Exclusion Process on the Half-Line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bose%20Gas%20and%20Asymmetric%20Simple%20Exclusion%20Process%20on%20the%20Half-Line&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Tracy,%20Craig%20A.&rft.date=2013&rft.volume=150&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-012-0686-4&rft_dat=%3Cgale_cross%3EA337369507%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A337369507&rfr_iscdi=true |