Stochastic Approximation to Understand Simple Simulation Models

This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2013-04, Vol.151 (1-2), p.254-276
Hauptverfasser: Izquierdo, Segismundo S., Izquierdo, Luis R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 1-2
container_start_page 254
container_title Journal of statistical physics
container_volume 151
creator Izquierdo, Segismundo S.
Izquierdo, Luis R.
description This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in n -player games with arbitrary payoffs.
doi_str_mv 10.1007/s10955-012-0654-z
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A337185087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337185087</galeid><sourcerecordid>A337185087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c6ffb93d989517de9aae3a60996edca03fbef717958d5e1a6af356350420d0313</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaD-jOP6B0ZFmWtSoh9AUpXaRZC0WP1MGxjKRAm6-vjLsus7gwM2eGexG6J7AgAPwhEhCMYSAlhppV-HyBZoTxEoua0Es0AyhLXHHCrtFNjAcAEI1gM_S4SV5_qZhaXSyHIfjv9qhS6_si-WLbGxtiUr0pNu1x6Owop26av3tju3iLrpzqor370znaPj99rl7x-uPlbbVcY01LnrCundsJasanhBsrlLJU1SBEbY1WQN3OOk64YI1hlqhaOcpqyqAqwQAldI4W09296qxse-dTUDqXscdW-966NveXlHLSMGh4BsgE6OBjDNbJIWRr4UcSkGNkcopM5sjkGJk8Z6acmJh3-70N8uBPoc--_oF-AYtSb6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Approximation to Understand Simple Simulation Models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Izquierdo, Segismundo S. ; Izquierdo, Luis R.</creator><creatorcontrib>Izquierdo, Segismundo S. ; Izquierdo, Luis R.</creatorcontrib><description>This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in n -player games with arbitrary payoffs.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-012-0654-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Computer simulation ; Computer-generated environments ; Markov processes ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2013-04, Vol.151 (1-2), p.254-276</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c6ffb93d989517de9aae3a60996edca03fbef717958d5e1a6af356350420d0313</citedby><cites>FETCH-LOGICAL-c327t-c6ffb93d989517de9aae3a60996edca03fbef717958d5e1a6af356350420d0313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-012-0654-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-012-0654-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Izquierdo, Segismundo S.</creatorcontrib><creatorcontrib>Izquierdo, Luis R.</creatorcontrib><title>Stochastic Approximation to Understand Simple Simulation Models</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in n -player games with arbitrary payoffs.</description><subject>Analysis</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaD-jOP6B0ZFmWtSoh9AUpXaRZC0WP1MGxjKRAm6-vjLsus7gwM2eGexG6J7AgAPwhEhCMYSAlhppV-HyBZoTxEoua0Es0AyhLXHHCrtFNjAcAEI1gM_S4SV5_qZhaXSyHIfjv9qhS6_si-WLbGxtiUr0pNu1x6Owop26av3tju3iLrpzqor370znaPj99rl7x-uPlbbVcY01LnrCundsJasanhBsrlLJU1SBEbY1WQN3OOk64YI1hlqhaOcpqyqAqwQAldI4W09296qxse-dTUDqXscdW-966NveXlHLSMGh4BsgE6OBjDNbJIWRr4UcSkGNkcopM5sjkGJk8Z6acmJh3-70N8uBPoc--_oF-AYtSb6U</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Izquierdo, Segismundo S.</creator><creator>Izquierdo, Luis R.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Stochastic Approximation to Understand Simple Simulation Models</title><author>Izquierdo, Segismundo S. ; Izquierdo, Luis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c6ffb93d989517de9aae3a60996edca03fbef717958d5e1a6af356350420d0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izquierdo, Segismundo S.</creatorcontrib><creatorcontrib>Izquierdo, Luis R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izquierdo, Segismundo S.</au><au>Izquierdo, Luis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Approximation to Understand Simple Simulation Models</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>151</volume><issue>1-2</issue><spage>254</spage><epage>276</epage><pages>254-276</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in n -player games with arbitrary payoffs.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-012-0654-z</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2013-04, Vol.151 (1-2), p.254-276
issn 0022-4715
1572-9613
language eng
recordid cdi_gale_infotracacademiconefile_A337185087
source SpringerLink Journals - AutoHoldings
subjects Analysis
Computer simulation
Computer-generated environments
Markov processes
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Stochastic Approximation to Understand Simple Simulation Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Approximation%20to%20Understand%20Simple%20Simulation%20Models&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Izquierdo,%20Segismundo%20S.&rft.date=2013-04-01&rft.volume=151&rft.issue=1-2&rft.spage=254&rft.epage=276&rft.pages=254-276&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-012-0654-z&rft_dat=%3Cgale_cross%3EA337185087%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A337185087&rfr_iscdi=true