Stochastic Approximation to Understand Simple Simulation Models
This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2013-04, Vol.151 (1-2), p.254-276 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 1-2 |
container_start_page | 254 |
container_title | Journal of statistical physics |
container_volume | 151 |
creator | Izquierdo, Segismundo S. Izquierdo, Luis R. |
description | This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in
n
-player games with arbitrary payoffs. |
doi_str_mv | 10.1007/s10955-012-0654-z |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A337185087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A337185087</galeid><sourcerecordid>A337185087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-c6ffb93d989517de9aae3a60996edca03fbef717958d5e1a6af356350420d0313</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaD-jOP6B0ZFmWtSoh9AUpXaRZC0WP1MGxjKRAm6-vjLsus7gwM2eGexG6J7AgAPwhEhCMYSAlhppV-HyBZoTxEoua0Es0AyhLXHHCrtFNjAcAEI1gM_S4SV5_qZhaXSyHIfjv9qhS6_si-WLbGxtiUr0pNu1x6Owop26av3tju3iLrpzqor370znaPj99rl7x-uPlbbVcY01LnrCundsJasanhBsrlLJU1SBEbY1WQN3OOk64YI1hlqhaOcpqyqAqwQAldI4W09296qxse-dTUDqXscdW-966NveXlHLSMGh4BsgE6OBjDNbJIWRr4UcSkGNkcopM5sjkGJk8Z6acmJh3-70N8uBPoc--_oF-AYtSb6U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stochastic Approximation to Understand Simple Simulation Models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Izquierdo, Segismundo S. ; Izquierdo, Luis R.</creator><creatorcontrib>Izquierdo, Segismundo S. ; Izquierdo, Luis R.</creatorcontrib><description>This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in
n
-player games with arbitrary payoffs.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-012-0654-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Computer simulation ; Computer-generated environments ; Markov processes ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2013-04, Vol.151 (1-2), p.254-276</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-c6ffb93d989517de9aae3a60996edca03fbef717958d5e1a6af356350420d0313</citedby><cites>FETCH-LOGICAL-c327t-c6ffb93d989517de9aae3a60996edca03fbef717958d5e1a6af356350420d0313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-012-0654-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-012-0654-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Izquierdo, Segismundo S.</creatorcontrib><creatorcontrib>Izquierdo, Luis R.</creatorcontrib><title>Stochastic Approximation to Understand Simple Simulation Models</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in
n
-player games with arbitrary payoffs.</description><subject>Analysis</subject><subject>Computer simulation</subject><subject>Computer-generated environments</subject><subject>Markov processes</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaD-jOP6B0ZFmWtSoh9AUpXaRZC0WP1MGxjKRAm6-vjLsus7gwM2eGexG6J7AgAPwhEhCMYSAlhppV-HyBZoTxEoua0Es0AyhLXHHCrtFNjAcAEI1gM_S4SV5_qZhaXSyHIfjv9qhS6_si-WLbGxtiUr0pNu1x6Owop26av3tju3iLrpzqor370znaPj99rl7x-uPlbbVcY01LnrCundsJasanhBsrlLJU1SBEbY1WQN3OOk64YI1hlqhaOcpqyqAqwQAldI4W09296qxse-dTUDqXscdW-966NveXlHLSMGh4BsgE6OBjDNbJIWRr4UcSkGNkcopM5sjkGJk8Z6acmJh3-70N8uBPoc--_oF-AYtSb6U</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Izquierdo, Segismundo S.</creator><creator>Izquierdo, Luis R.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Stochastic Approximation to Understand Simple Simulation Models</title><author>Izquierdo, Segismundo S. ; Izquierdo, Luis R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-c6ffb93d989517de9aae3a60996edca03fbef717958d5e1a6af356350420d0313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Computer simulation</topic><topic>Computer-generated environments</topic><topic>Markov processes</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izquierdo, Segismundo S.</creatorcontrib><creatorcontrib>Izquierdo, Luis R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izquierdo, Segismundo S.</au><au>Izquierdo, Luis R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Approximation to Understand Simple Simulation Models</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>151</volume><issue>1-2</issue><spage>254</spage><epage>276</epage><pages>254-276</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in
n
-player games with arbitrary payoffs.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10955-012-0654-z</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2013-04, Vol.151 (1-2), p.254-276 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A337185087 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Computer simulation Computer-generated environments Markov processes Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | Stochastic Approximation to Understand Simple Simulation Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Approximation%20to%20Understand%20Simple%20Simulation%20Models&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Izquierdo,%20Segismundo%20S.&rft.date=2013-04-01&rft.volume=151&rft.issue=1-2&rft.spage=254&rft.epage=276&rft.pages=254-276&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-012-0654-z&rft_dat=%3Cgale_cross%3EA337185087%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A337185087&rfr_iscdi=true |