Biobased composites/Biokompozyty
Biobased thermoplastics, such as poly(lactic acid), have attracted much attention in recent years as an alternative to oil-based plastics both in academia and industry. Based on renewable raw materials these polymers offer advantages in terms of decreased dependence on fossil resources and reduced C...
Gespeichert in:
Veröffentlicht in: | Polimery 2013-06, Vol.58 (6), p.423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 423 |
container_title | Polimery |
container_volume | 58 |
creator | Ganster, Johannes Erdmann, Jens Fink, Hans-Peter |
description | Biobased thermoplastics, such as poly(lactic acid), have attracted much attention in recent years as an alternative to oil-based plastics both in academia and industry. Based on renewable raw materials these polymers offer advantages in terms of decreased dependence on fossil resources and reduced C[O.sub.2] footprint in accord with sustainability ideas and climate protection. In order to improve the properties of these materials, reinforcement with biobased fibers represents a promising option. An alternative route to glass and natural fiber reinforcement was taken and intensively investigated. The novel approach is based on the use of cellulose man-made fibers, in particular rayon tire cord yarn, as a biogenic reinforcing component. It was demonstrated that short fiber rayon reinforcement leads to dramatic improvements in the mechanical properties of various biobased and partially biobased matrix materials. While stiffness is easily enhanced also with natural fibers, the use of rayon results in considerable improvements in strength and impact properties in contrast to natural fiber reinforcement. For example, an enhancement of more than 500 % was observed in notched Charpy impact strength of poly(lactic acid). In the present contribution results concerning composite mechanical properties will be presented for various biobased matrix materials with special emphasis on the role of the fiber-matrix interphase. By reactive extrusion this interphase can be tailored from being weak (anti-coupling), intermediate (no modification) or strong (covalent coupling). Implications for the composite properties as a function of matrix stiffness will be discussed. Other factors influencing the composite properties such as fiber length and fiber diameter will be considered as well. Finally, some general conclusions will be drawn concerning future work and industrial prospects. Keywords: biocomposites, interface, poly(lactic acid), cellulose fibers, mechanical properties. Termoplastyczne biopolimery, np. poli(kwas mlekowy), w ostatnich latach skupiaja uwage zarowno osrodkow naukowych, jak i przemyslu, stanowiac alternatywe dla materialow wytwarzanych z produktow petrochemicznych. Biopolimery otrzymywane z surowcow pozyskiwanych ze zrodel odnawialnych pozwalaja na zmniejszenie zaleznosci od zasobow paliw kopalnych, wpisuja sie tezwidee zrownowazonego rozwoju i ochrony srodowiska.Wcelu poprawy wytrzymalosci mechanicznej tego rodzaju polimerow stosuje sie dodatek wzmacniajacyc |
format | Article |
fullrecord | <record><control><sourceid>gale</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A334486477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A334486477</galeid><sourcerecordid>A334486477</sourcerecordid><originalsourceid>FETCH-gale_infotracacademiconefile_A3344864773</originalsourceid><addsrcrecordid>eNpjYeA0MDA20jUyNzLlYOAqLs4yMDAzMTCw4GRQcMrMT0osTk1RSM7PLcgvzixJLdYHimWDeFWVJZU8DKxpiTnFqbxQmptBz801xNlDNz0xJzU-My8tv6QoMRkIU1JzM5Pz81LTMoHijsbGJiYWZibm5sYkawAAVtc1dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biobased composites/Biokompozyty</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ganster, Johannes ; Erdmann, Jens ; Fink, Hans-Peter</creator><creatorcontrib>Ganster, Johannes ; Erdmann, Jens ; Fink, Hans-Peter</creatorcontrib><description>Biobased thermoplastics, such as poly(lactic acid), have attracted much attention in recent years as an alternative to oil-based plastics both in academia and industry. Based on renewable raw materials these polymers offer advantages in terms of decreased dependence on fossil resources and reduced C[O.sub.2] footprint in accord with sustainability ideas and climate protection. In order to improve the properties of these materials, reinforcement with biobased fibers represents a promising option. An alternative route to glass and natural fiber reinforcement was taken and intensively investigated. The novel approach is based on the use of cellulose man-made fibers, in particular rayon tire cord yarn, as a biogenic reinforcing component. It was demonstrated that short fiber rayon reinforcement leads to dramatic improvements in the mechanical properties of various biobased and partially biobased matrix materials. While stiffness is easily enhanced also with natural fibers, the use of rayon results in considerable improvements in strength and impact properties in contrast to natural fiber reinforcement. For example, an enhancement of more than 500 % was observed in notched Charpy impact strength of poly(lactic acid). In the present contribution results concerning composite mechanical properties will be presented for various biobased matrix materials with special emphasis on the role of the fiber-matrix interphase. By reactive extrusion this interphase can be tailored from being weak (anti-coupling), intermediate (no modification) or strong (covalent coupling). Implications for the composite properties as a function of matrix stiffness will be discussed. Other factors influencing the composite properties such as fiber length and fiber diameter will be considered as well. Finally, some general conclusions will be drawn concerning future work and industrial prospects. Keywords: biocomposites, interface, poly(lactic acid), cellulose fibers, mechanical properties. Termoplastyczne biopolimery, np. poli(kwas mlekowy), w ostatnich latach skupiaja uwage zarowno osrodkow naukowych, jak i przemyslu, stanowiac alternatywe dla materialow wytwarzanych z produktow petrochemicznych. Biopolimery otrzymywane z surowcow pozyskiwanych ze zrodel odnawialnych pozwalaja na zmniejszenie zaleznosci od zasobow paliw kopalnych, wpisuja sie tezwidee zrownowazonego rozwoju i ochrony srodowiska.Wcelu poprawy wytrzymalosci mechanicznej tego rodzaju polimerow stosuje sie dodatek wzmacniajacych biowlokien jako zamiennikow dotychczas uzywanych wlokien szklanych lub wlokien naturalnych. W niniejszym artykule omowiono wplyw dodatku krotkich wlokien regenerowanej celulozy (rayon) na mechaniczne wlasciwosci kompozytow na osnowie calkowicie lub czesciowo biologicznych polimerow. Zastosowanie naturalnych wlokien w charakterze wzmocnienia biopolimerow prowadzi do zwiekszenia sztywnosci materialu matrycy, uzycie natomiast wlokien rayon pozwala na polepszenie wytrzymalosci mechanicznej i udarnosci [np. dodatek celulozy rayon do poli(kwasu mlekowego) powoduje wzrost o 500 % udarnosci z karbem wg Charpy'ego]. Okreslono wplyw roznorodnych czynnikow na wytrzymalosc mechaniczna biokompozytow wzmacnianych wloknami rayon, m.in. oddzialywan miedzyfazowych wlokno-matryca polimerowa. Na drodze reaktywnego wytlaczania mozna otrzymac kompozyty o roznej sile wiazania wlokien z matryca polimeru. Omowiono takze zaleznosci wlasciwosci biokompozytow z dodatkiem wlokien rayon od sztywnosci bazowego polimeru jak rowniez od dlugosci i srednicy wykorzystywanych do wzmocnienia wlokien. Slowa kluczowe: biokompozyty, interfaza, poli(kwasmlekowy),wlokna celulozowe, wlasciwosci mechaniczne.</description><identifier>ISSN: 0032-2725</identifier><language>eng</language><publisher>Industrial Chemistry Research Institute</publisher><subject>Biopolymers ; Fibrous composites ; Mechanical properties ; Strength of materials ; Thermoplastics</subject><ispartof>Polimery, 2013-06, Vol.58 (6), p.423</ispartof><rights>COPYRIGHT 2013 Industrial Chemistry Research Institute</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Ganster, Johannes</creatorcontrib><creatorcontrib>Erdmann, Jens</creatorcontrib><creatorcontrib>Fink, Hans-Peter</creatorcontrib><title>Biobased composites/Biokompozyty</title><title>Polimery</title><description>Biobased thermoplastics, such as poly(lactic acid), have attracted much attention in recent years as an alternative to oil-based plastics both in academia and industry. Based on renewable raw materials these polymers offer advantages in terms of decreased dependence on fossil resources and reduced C[O.sub.2] footprint in accord with sustainability ideas and climate protection. In order to improve the properties of these materials, reinforcement with biobased fibers represents a promising option. An alternative route to glass and natural fiber reinforcement was taken and intensively investigated. The novel approach is based on the use of cellulose man-made fibers, in particular rayon tire cord yarn, as a biogenic reinforcing component. It was demonstrated that short fiber rayon reinforcement leads to dramatic improvements in the mechanical properties of various biobased and partially biobased matrix materials. While stiffness is easily enhanced also with natural fibers, the use of rayon results in considerable improvements in strength and impact properties in contrast to natural fiber reinforcement. For example, an enhancement of more than 500 % was observed in notched Charpy impact strength of poly(lactic acid). In the present contribution results concerning composite mechanical properties will be presented for various biobased matrix materials with special emphasis on the role of the fiber-matrix interphase. By reactive extrusion this interphase can be tailored from being weak (anti-coupling), intermediate (no modification) or strong (covalent coupling). Implications for the composite properties as a function of matrix stiffness will be discussed. Other factors influencing the composite properties such as fiber length and fiber diameter will be considered as well. Finally, some general conclusions will be drawn concerning future work and industrial prospects. Keywords: biocomposites, interface, poly(lactic acid), cellulose fibers, mechanical properties. Termoplastyczne biopolimery, np. poli(kwas mlekowy), w ostatnich latach skupiaja uwage zarowno osrodkow naukowych, jak i przemyslu, stanowiac alternatywe dla materialow wytwarzanych z produktow petrochemicznych. Biopolimery otrzymywane z surowcow pozyskiwanych ze zrodel odnawialnych pozwalaja na zmniejszenie zaleznosci od zasobow paliw kopalnych, wpisuja sie tezwidee zrownowazonego rozwoju i ochrony srodowiska.Wcelu poprawy wytrzymalosci mechanicznej tego rodzaju polimerow stosuje sie dodatek wzmacniajacych biowlokien jako zamiennikow dotychczas uzywanych wlokien szklanych lub wlokien naturalnych. W niniejszym artykule omowiono wplyw dodatku krotkich wlokien regenerowanej celulozy (rayon) na mechaniczne wlasciwosci kompozytow na osnowie calkowicie lub czesciowo biologicznych polimerow. Zastosowanie naturalnych wlokien w charakterze wzmocnienia biopolimerow prowadzi do zwiekszenia sztywnosci materialu matrycy, uzycie natomiast wlokien rayon pozwala na polepszenie wytrzymalosci mechanicznej i udarnosci [np. dodatek celulozy rayon do poli(kwasu mlekowego) powoduje wzrost o 500 % udarnosci z karbem wg Charpy'ego]. Okreslono wplyw roznorodnych czynnikow na wytrzymalosc mechaniczna biokompozytow wzmacnianych wloknami rayon, m.in. oddzialywan miedzyfazowych wlokno-matryca polimerowa. Na drodze reaktywnego wytlaczania mozna otrzymac kompozyty o roznej sile wiazania wlokien z matryca polimeru. Omowiono takze zaleznosci wlasciwosci biokompozytow z dodatkiem wlokien rayon od sztywnosci bazowego polimeru jak rowniez od dlugosci i srednicy wykorzystywanych do wzmocnienia wlokien. Slowa kluczowe: biokompozyty, interfaza, poli(kwasmlekowy),wlokna celulozowe, wlasciwosci mechaniczne.</description><subject>Biopolymers</subject><subject>Fibrous composites</subject><subject>Mechanical properties</subject><subject>Strength of materials</subject><subject>Thermoplastics</subject><issn>0032-2725</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYeA0MDA20jUyNzLlYOAqLs4yMDAzMTCw4GRQcMrMT0osTk1RSM7PLcgvzixJLdYHimWDeFWVJZU8DKxpiTnFqbxQmptBz801xNlDNz0xJzU-My8tv6QoMRkIU1JzM5Pz81LTMoHijsbGJiYWZibm5sYkawAAVtc1dA</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Ganster, Johannes</creator><creator>Erdmann, Jens</creator><creator>Fink, Hans-Peter</creator><general>Industrial Chemistry Research Institute</general><scope/></search><sort><creationdate>20130601</creationdate><title>Biobased composites/Biokompozyty</title><author>Ganster, Johannes ; Erdmann, Jens ; Fink, Hans-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-gale_infotracacademiconefile_A3344864773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biopolymers</topic><topic>Fibrous composites</topic><topic>Mechanical properties</topic><topic>Strength of materials</topic><topic>Thermoplastics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganster, Johannes</creatorcontrib><creatorcontrib>Erdmann, Jens</creatorcontrib><creatorcontrib>Fink, Hans-Peter</creatorcontrib><jtitle>Polimery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganster, Johannes</au><au>Erdmann, Jens</au><au>Fink, Hans-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biobased composites/Biokompozyty</atitle><jtitle>Polimery</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>58</volume><issue>6</issue><spage>423</spage><pages>423-</pages><issn>0032-2725</issn><abstract>Biobased thermoplastics, such as poly(lactic acid), have attracted much attention in recent years as an alternative to oil-based plastics both in academia and industry. Based on renewable raw materials these polymers offer advantages in terms of decreased dependence on fossil resources and reduced C[O.sub.2] footprint in accord with sustainability ideas and climate protection. In order to improve the properties of these materials, reinforcement with biobased fibers represents a promising option. An alternative route to glass and natural fiber reinforcement was taken and intensively investigated. The novel approach is based on the use of cellulose man-made fibers, in particular rayon tire cord yarn, as a biogenic reinforcing component. It was demonstrated that short fiber rayon reinforcement leads to dramatic improvements in the mechanical properties of various biobased and partially biobased matrix materials. While stiffness is easily enhanced also with natural fibers, the use of rayon results in considerable improvements in strength and impact properties in contrast to natural fiber reinforcement. For example, an enhancement of more than 500 % was observed in notched Charpy impact strength of poly(lactic acid). In the present contribution results concerning composite mechanical properties will be presented for various biobased matrix materials with special emphasis on the role of the fiber-matrix interphase. By reactive extrusion this interphase can be tailored from being weak (anti-coupling), intermediate (no modification) or strong (covalent coupling). Implications for the composite properties as a function of matrix stiffness will be discussed. Other factors influencing the composite properties such as fiber length and fiber diameter will be considered as well. Finally, some general conclusions will be drawn concerning future work and industrial prospects. Keywords: biocomposites, interface, poly(lactic acid), cellulose fibers, mechanical properties. Termoplastyczne biopolimery, np. poli(kwas mlekowy), w ostatnich latach skupiaja uwage zarowno osrodkow naukowych, jak i przemyslu, stanowiac alternatywe dla materialow wytwarzanych z produktow petrochemicznych. Biopolimery otrzymywane z surowcow pozyskiwanych ze zrodel odnawialnych pozwalaja na zmniejszenie zaleznosci od zasobow paliw kopalnych, wpisuja sie tezwidee zrownowazonego rozwoju i ochrony srodowiska.Wcelu poprawy wytrzymalosci mechanicznej tego rodzaju polimerow stosuje sie dodatek wzmacniajacych biowlokien jako zamiennikow dotychczas uzywanych wlokien szklanych lub wlokien naturalnych. W niniejszym artykule omowiono wplyw dodatku krotkich wlokien regenerowanej celulozy (rayon) na mechaniczne wlasciwosci kompozytow na osnowie calkowicie lub czesciowo biologicznych polimerow. Zastosowanie naturalnych wlokien w charakterze wzmocnienia biopolimerow prowadzi do zwiekszenia sztywnosci materialu matrycy, uzycie natomiast wlokien rayon pozwala na polepszenie wytrzymalosci mechanicznej i udarnosci [np. dodatek celulozy rayon do poli(kwasu mlekowego) powoduje wzrost o 500 % udarnosci z karbem wg Charpy'ego]. Okreslono wplyw roznorodnych czynnikow na wytrzymalosc mechaniczna biokompozytow wzmacnianych wloknami rayon, m.in. oddzialywan miedzyfazowych wlokno-matryca polimerowa. Na drodze reaktywnego wytlaczania mozna otrzymac kompozyty o roznej sile wiazania wlokien z matryca polimeru. Omowiono takze zaleznosci wlasciwosci biokompozytow z dodatkiem wlokien rayon od sztywnosci bazowego polimeru jak rowniez od dlugosci i srednicy wykorzystywanych do wzmocnienia wlokien. Slowa kluczowe: biokompozyty, interfaza, poli(kwasmlekowy),wlokna celulozowe, wlasciwosci mechaniczne.</abstract><pub>Industrial Chemistry Research Institute</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-2725 |
ispartof | Polimery, 2013-06, Vol.58 (6), p.423 |
issn | 0032-2725 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A334486477 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Biopolymers Fibrous composites Mechanical properties Strength of materials Thermoplastics |
title | Biobased composites/Biokompozyty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A46%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biobased%20composites/Biokompozyty&rft.jtitle=Polimery&rft.au=Ganster,%20Johannes&rft.date=2013-06-01&rft.volume=58&rft.issue=6&rft.spage=423&rft.pages=423-&rft.issn=0032-2725&rft_id=info:doi/&rft_dat=%3Cgale%3EA334486477%3C/gale%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A334486477&rfr_iscdi=true |