Data Assimilation Strategies in the Planetary Boundary Layer
We investigate the effect of the assimilation of surface and boundary-layer mass-field observations on the planetary boundary layer (PBL) within a one-dimensional (1D) version of the non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Mod...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2010-11, Vol.137 (2), p.237-269 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 2 |
container_start_page | 237 |
container_title | Boundary-layer meteorology |
container_volume | 137 |
creator | Reen, Brian P Stauffer, David R |
description | We investigate the effect of the assimilation of surface and boundary-layer mass-field observations on the planetary boundary layer (PBL) within a one-dimensional (1D) version of the non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). We focus on the vertical extent and effects of mass-field nudging within the PBL based on surface observations, and the added value of assimilating column mass observations within the PBL. Model experiments for dynamic initialization and dynamic analysis are conducted and composited for 29 May, 6 June, and 7 June 2002 during the International H₂O Project (IHOP) over the Southern Great Plains, U.S.A. Advantages are found when the data assimilation uses the innovation (the difference between the modelled value and the observed value) calculated by comparing the surface mass-field observation to the model value at the 2-m observation height rather than at the lowest model level. It is shown that this innovation can be applied throughout the model-diagnosed PBL via nudging during free-convective conditions because of the well-mixed nature of the PBL. However, in stable conditions, due to decreased vertical mixing the surface innovation may be best applied only in a shallow layer adjacent to the surface. Surface air-temperature innovations were also applied to the top soil-layer temperature to minimize disruption to the surface energy balance. In combination with the surface observations, the use of within-PBL mass-field data assimilation improves the simulated PBL structure. |
doi_str_mv | 10.1007/s10546-010-9528-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A333711730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A333711730</galeid><sourcerecordid>A333711730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-ac62d7bb28c4c19894f6eac63b06ce5cd7aed4a4ffd273660c96cfc12f6789c93</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwAzjRC8dCnKRJK3EZ30iTQBo7R16ajExdOiXdgX9PpiKOyAc7tp9XzkvIJdAboFTdJqCVkCUFWjYVq0t5RCZQKV6CUOyYTCilsqw5iFNyltImPxVUdELuHnHAYpaS3_oOB9-HYjFEHOza21T4UAxftvjoMNgB43dx3-9Deyjm-G3jOTlx2CV78ZunZPn89PnwWs7fX94eZvPSCKGGEo1krVqtWG2EgaZuhJM2N_mKSmMr0yq0rUDhXMsUl5KaRhpngDmp6sY0fEpuRt01dlb74Pp8osnR2q03fbDO5_6Mc64AFKcZgBEwsU8pWqd30W_z3RqoPvilR7909ksf_NIyM9cjs8NksHMRg_HpD2ScAxOC5T027qU8Cmsb9abfx5D__6_41Qg57DWuYxZeLhgFTqFuGpCM_wBs-oOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data Assimilation Strategies in the Planetary Boundary Layer</title><source>SpringerNature Journals</source><creator>Reen, Brian P ; Stauffer, David R</creator><creatorcontrib>Reen, Brian P ; Stauffer, David R</creatorcontrib><description>We investigate the effect of the assimilation of surface and boundary-layer mass-field observations on the planetary boundary layer (PBL) within a one-dimensional (1D) version of the non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). We focus on the vertical extent and effects of mass-field nudging within the PBL based on surface observations, and the added value of assimilating column mass observations within the PBL. Model experiments for dynamic initialization and dynamic analysis are conducted and composited for 29 May, 6 June, and 7 June 2002 during the International H₂O Project (IHOP) over the Southern Great Plains, U.S.A. Advantages are found when the data assimilation uses the innovation (the difference between the modelled value and the observed value) calculated by comparing the surface mass-field observation to the model value at the 2-m observation height rather than at the lowest model level. It is shown that this innovation can be applied throughout the model-diagnosed PBL via nudging during free-convective conditions because of the well-mixed nature of the PBL. However, in stable conditions, due to decreased vertical mixing the surface innovation may be best applied only in a shallow layer adjacent to the surface. Surface air-temperature innovations were also applied to the top soil-layer temperature to minimize disruption to the surface energy balance. In combination with the surface observations, the use of within-PBL mass-field data assimilation improves the simulated PBL structure.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-010-9528-6</identifier><identifier>CODEN: BLMEBR</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Analysis ; Atmospheric boundary layer ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric research ; Atmospheric Sciences ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Data assimilation ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Land-surface heterogeneity ; Land-surface model ; Mesoscale modelling ; Meteorology ; Observational nudging ; Planetary boundary layer</subject><ispartof>Boundary-layer meteorology, 2010-11, Vol.137 (2), p.237-269</ispartof><rights>Springer Science+Business Media B.V. 2010</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-ac62d7bb28c4c19894f6eac63b06ce5cd7aed4a4ffd273660c96cfc12f6789c93</citedby><cites>FETCH-LOGICAL-c447t-ac62d7bb28c4c19894f6eac63b06ce5cd7aed4a4ffd273660c96cfc12f6789c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-010-9528-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-010-9528-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23312442$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reen, Brian P</creatorcontrib><creatorcontrib>Stauffer, David R</creatorcontrib><title>Data Assimilation Strategies in the Planetary Boundary Layer</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><description>We investigate the effect of the assimilation of surface and boundary-layer mass-field observations on the planetary boundary layer (PBL) within a one-dimensional (1D) version of the non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). We focus on the vertical extent and effects of mass-field nudging within the PBL based on surface observations, and the added value of assimilating column mass observations within the PBL. Model experiments for dynamic initialization and dynamic analysis are conducted and composited for 29 May, 6 June, and 7 June 2002 during the International H₂O Project (IHOP) over the Southern Great Plains, U.S.A. Advantages are found when the data assimilation uses the innovation (the difference between the modelled value and the observed value) calculated by comparing the surface mass-field observation to the model value at the 2-m observation height rather than at the lowest model level. It is shown that this innovation can be applied throughout the model-diagnosed PBL via nudging during free-convective conditions because of the well-mixed nature of the PBL. However, in stable conditions, due to decreased vertical mixing the surface innovation may be best applied only in a shallow layer adjacent to the surface. Surface air-temperature innovations were also applied to the top soil-layer temperature to minimize disruption to the surface energy balance. In combination with the surface observations, the use of within-PBL mass-field data assimilation improves the simulated PBL structure.</description><subject>Analysis</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric research</subject><subject>Atmospheric Sciences</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Data assimilation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Land-surface heterogeneity</subject><subject>Land-surface model</subject><subject>Mesoscale modelling</subject><subject>Meteorology</subject><subject>Observational nudging</subject><subject>Planetary boundary layer</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwAzjRC8dCnKRJK3EZ30iTQBo7R16ajExdOiXdgX9PpiKOyAc7tp9XzkvIJdAboFTdJqCVkCUFWjYVq0t5RCZQKV6CUOyYTCilsqw5iFNyltImPxVUdELuHnHAYpaS3_oOB9-HYjFEHOza21T4UAxftvjoMNgB43dx3-9Deyjm-G3jOTlx2CV78ZunZPn89PnwWs7fX94eZvPSCKGGEo1krVqtWG2EgaZuhJM2N_mKSmMr0yq0rUDhXMsUl5KaRhpngDmp6sY0fEpuRt01dlb74Pp8osnR2q03fbDO5_6Mc64AFKcZgBEwsU8pWqd30W_z3RqoPvilR7909ksf_NIyM9cjs8NksHMRg_HpD2ScAxOC5T027qU8Cmsb9abfx5D__6_41Qg57DWuYxZeLhgFTqFuGpCM_wBs-oOA</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Reen, Brian P</creator><creator>Stauffer, David R</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20101101</creationdate><title>Data Assimilation Strategies in the Planetary Boundary Layer</title><author>Reen, Brian P ; Stauffer, David R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-ac62d7bb28c4c19894f6eac63b06ce5cd7aed4a4ffd273660c96cfc12f6789c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analysis</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric research</topic><topic>Atmospheric Sciences</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Data assimilation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Land-surface heterogeneity</topic><topic>Land-surface model</topic><topic>Mesoscale modelling</topic><topic>Meteorology</topic><topic>Observational nudging</topic><topic>Planetary boundary layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reen, Brian P</creatorcontrib><creatorcontrib>Stauffer, David R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reen, Brian P</au><au>Stauffer, David R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data Assimilation Strategies in the Planetary Boundary Layer</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><date>2010-11-01</date><risdate>2010</risdate><volume>137</volume><issue>2</issue><spage>237</spage><epage>269</epage><pages>237-269</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><coden>BLMEBR</coden><abstract>We investigate the effect of the assimilation of surface and boundary-layer mass-field observations on the planetary boundary layer (PBL) within a one-dimensional (1D) version of the non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). We focus on the vertical extent and effects of mass-field nudging within the PBL based on surface observations, and the added value of assimilating column mass observations within the PBL. Model experiments for dynamic initialization and dynamic analysis are conducted and composited for 29 May, 6 June, and 7 June 2002 during the International H₂O Project (IHOP) over the Southern Great Plains, U.S.A. Advantages are found when the data assimilation uses the innovation (the difference between the modelled value and the observed value) calculated by comparing the surface mass-field observation to the model value at the 2-m observation height rather than at the lowest model level. It is shown that this innovation can be applied throughout the model-diagnosed PBL via nudging during free-convective conditions because of the well-mixed nature of the PBL. However, in stable conditions, due to decreased vertical mixing the surface innovation may be best applied only in a shallow layer adjacent to the surface. Surface air-temperature innovations were also applied to the top soil-layer temperature to minimize disruption to the surface energy balance. In combination with the surface observations, the use of within-PBL mass-field data assimilation improves the simulated PBL structure.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><doi>10.1007/s10546-010-9528-6</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2010-11, Vol.137 (2), p.237-269 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_gale_infotracacademiconefile_A333711730 |
source | SpringerNature Journals |
subjects | Analysis Atmospheric boundary layer Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric research Atmospheric Sciences Convection, turbulence, diffusion. Boundary layer structure and dynamics Data assimilation Earth and Environmental Science Earth Sciences Earth, ocean, space Exact sciences and technology External geophysics Land-surface heterogeneity Land-surface model Mesoscale modelling Meteorology Observational nudging Planetary boundary layer |
title | Data Assimilation Strategies in the Planetary Boundary Layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A06%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20Assimilation%20Strategies%20in%20the%20Planetary%20Boundary%20Layer&rft.jtitle=Boundary-layer%20meteorology&rft.au=Reen,%20Brian%20P&rft.date=2010-11-01&rft.volume=137&rft.issue=2&rft.spage=237&rft.epage=269&rft.pages=237-269&rft.issn=0006-8314&rft.eissn=1573-1472&rft.coden=BLMEBR&rft_id=info:doi/10.1007/s10546-010-9528-6&rft_dat=%3Cgale_cross%3EA333711730%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A333711730&rfr_iscdi=true |