Comparison of risk-based optimization models for reservoir management

Risk minimization in stochastic systems is a challenging problem and this paper compares results of three different techniques in reservoir management. Two-stage stochastic programming (TSP) for maximizing expected benefits is a well-known method, Fletcher and Ponnambalam (FP) and Q-Learning are the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of civil engineering 2010-01, Vol.37 (1), p.112-124
Hauptverfasser: Mahootchi, M, Ponnambalam, K, Tizhoosh, H.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 1
container_start_page 112
container_title Canadian journal of civil engineering
container_volume 37
creator Mahootchi, M
Ponnambalam, K
Tizhoosh, H.R
description Risk minimization in stochastic systems is a challenging problem and this paper compares results of three different techniques in reservoir management. Two-stage stochastic programming (TSP) for maximizing expected benefits is a well-known method, Fletcher and Ponnambalam (FP) and Q-Learning are the two new methods in reservoir management, all of which can include risk minimization in the objective function. The water price uncertainties caused by deregulated markets are considered in addition to random inflows in optimization and simulation is used to compare the results and to develop a risk versus return trade-off curve. One of the contributions of this paper is to consider risk in the Q-Learning algorithm.
doi_str_mv 10.1139/L09-165
format Article
fullrecord <record><control><sourceid>gale_nrcre</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A218877420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A218877420</galeid><sourcerecordid>A218877420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-3f58518e2e7ac54b37cdad898403033c36142ff08483a96fba95a71f8ad3bf6d3</originalsourceid><addsrcrecordid>eNqV0m1r1TAUAOAiCl6n-BfKxIliZ176kn4cl6mDi4Ivn8NpetJltkmXtEP99aZ0yK5cBQkkIXnO4cA5SfKUklNKef1mR-qMlsW9ZEMZEVlJWH0_2RBOi4zmpXiYPArhihBKOK83yfnWDSN4E5xNnU7j5VvWQMA2deNkBvMTJhO_BtdiH1LtfOoxoL9xxqcDWOhwQDs9Th5o6AM-uT2Pkq9vz79s32e7j-8utme7TJV5NWVcF6KgAhlWoIq84ZVqoRW1yAmP5She0pxpTUQuONSlbqAuoKJaQMsbXbb8KDlZ847eXc8YJjmYoLDvwaKbg2SUk6ISLMLjP-CVm72NtS2GV5xSEdGzFXXQozRWu8mDWjLKM0aFqKqckaiyA6pDix56Z1Gb-Lznjw94NZpreRedHkBxtTgYdTDry72AaCb8PnUwhyAvPn_6D_th376-Y5s5GIshbsF0l1NYQ_b4i5Ur70LwqOXozQD-h6RELuMn4_jJOH5RPr_tAAQFvfZglQm_OWNFVRG2dOrV6qxXy2iBV5f_SHryd9yvSI6t5r8AwbDuzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213373118</pqid></control><display><type>article</type><title>Comparison of risk-based optimization models for reservoir management</title><source>Alma/SFX Local Collection</source><creator>Mahootchi, M ; Ponnambalam, K ; Tizhoosh, H.R</creator><creatorcontrib>Mahootchi, M ; Ponnambalam, K ; Tizhoosh, H.R</creatorcontrib><description>Risk minimization in stochastic systems is a challenging problem and this paper compares results of three different techniques in reservoir management. Two-stage stochastic programming (TSP) for maximizing expected benefits is a well-known method, Fletcher and Ponnambalam (FP) and Q-Learning are the two new methods in reservoir management, all of which can include risk minimization in the objective function. The water price uncertainties caused by deregulated markets are considered in addition to random inflows in optimization and simulation is used to compare the results and to develop a risk versus return trade-off curve. One of the contributions of this paper is to consider risk in the Q-Learning algorithm.</description><identifier>ISSN: 0315-1468</identifier><identifier>EISSN: 1208-6029</identifier><identifier>DOI: 10.1139/L09-165</identifier><identifier>CODEN: CJCEB8</identifier><language>eng</language><publisher>Ottawa, ON: National Research Council of Canada</publisher><subject>Algorithms ; Applied sciences ; Buildings. Public works ; Comparative analysis ; Computation methods. Tables. Charts ; Exact sciences and technology ; Hydraulic constructions ; Management ; Mathematical optimization ; Natural resource management ; Objective function ; Optimization ; programmation dynamique stochastique ; programmation stochastique ; Q-Learning ; Reservoir management ; Reservoirs ; risk ; Risk assessment ; Risk reduction ; risque ; réservoirs d'eau ; stochastic dynamic programming ; Stochastic models ; Stochastic programming ; Structural analysis. Stresses ; water reservoirs</subject><ispartof>Canadian journal of civil engineering, 2010-01, Vol.37 (1), p.112-124</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2010 NRC Research Press</rights><rights>Copyright National Research Council of Canada Jan 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-3f58518e2e7ac54b37cdad898403033c36142ff08483a96fba95a71f8ad3bf6d3</citedby><cites>FETCH-LOGICAL-c647t-3f58518e2e7ac54b37cdad898403033c36142ff08483a96fba95a71f8ad3bf6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22577022$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahootchi, M</creatorcontrib><creatorcontrib>Ponnambalam, K</creatorcontrib><creatorcontrib>Tizhoosh, H.R</creatorcontrib><title>Comparison of risk-based optimization models for reservoir management</title><title>Canadian journal of civil engineering</title><addtitle>Revue canadienne de génie civil</addtitle><description>Risk minimization in stochastic systems is a challenging problem and this paper compares results of three different techniques in reservoir management. Two-stage stochastic programming (TSP) for maximizing expected benefits is a well-known method, Fletcher and Ponnambalam (FP) and Q-Learning are the two new methods in reservoir management, all of which can include risk minimization in the objective function. The water price uncertainties caused by deregulated markets are considered in addition to random inflows in optimization and simulation is used to compare the results and to develop a risk versus return trade-off curve. One of the contributions of this paper is to consider risk in the Q-Learning algorithm.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Comparative analysis</subject><subject>Computation methods. Tables. Charts</subject><subject>Exact sciences and technology</subject><subject>Hydraulic constructions</subject><subject>Management</subject><subject>Mathematical optimization</subject><subject>Natural resource management</subject><subject>Objective function</subject><subject>Optimization</subject><subject>programmation dynamique stochastique</subject><subject>programmation stochastique</subject><subject>Q-Learning</subject><subject>Reservoir management</subject><subject>Reservoirs</subject><subject>risk</subject><subject>Risk assessment</subject><subject>Risk reduction</subject><subject>risque</subject><subject>réservoirs d'eau</subject><subject>stochastic dynamic programming</subject><subject>Stochastic models</subject><subject>Stochastic programming</subject><subject>Structural analysis. Stresses</subject><subject>water reservoirs</subject><issn>0315-1468</issn><issn>1208-6029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNqV0m1r1TAUAOAiCl6n-BfKxIliZ176kn4cl6mDi4Ivn8NpetJltkmXtEP99aZ0yK5cBQkkIXnO4cA5SfKUklNKef1mR-qMlsW9ZEMZEVlJWH0_2RBOi4zmpXiYPArhihBKOK83yfnWDSN4E5xNnU7j5VvWQMA2deNkBvMTJhO_BtdiH1LtfOoxoL9xxqcDWOhwQDs9Th5o6AM-uT2Pkq9vz79s32e7j-8utme7TJV5NWVcF6KgAhlWoIq84ZVqoRW1yAmP5She0pxpTUQuONSlbqAuoKJaQMsbXbb8KDlZ847eXc8YJjmYoLDvwaKbg2SUk6ISLMLjP-CVm72NtS2GV5xSEdGzFXXQozRWu8mDWjLKM0aFqKqckaiyA6pDix56Z1Gb-Lznjw94NZpreRedHkBxtTgYdTDry72AaCb8PnUwhyAvPn_6D_th376-Y5s5GIshbsF0l1NYQ_b4i5Ur70LwqOXozQD-h6RELuMn4_jJOH5RPr_tAAQFvfZglQm_OWNFVRG2dOrV6qxXy2iBV5f_SHryd9yvSI6t5r8AwbDuzg</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Mahootchi, M</creator><creator>Ponnambalam, K</creator><creator>Tizhoosh, H.R</creator><general>National Research Council of Canada</general><general>NRC Research Press</general><general>Canadian Science Publishing NRC Research Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>ISN</scope><scope>ISR</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>201001</creationdate><title>Comparison of risk-based optimization models for reservoir management</title><author>Mahootchi, M ; Ponnambalam, K ; Tizhoosh, H.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-3f58518e2e7ac54b37cdad898403033c36142ff08483a96fba95a71f8ad3bf6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Comparative analysis</topic><topic>Computation methods. Tables. Charts</topic><topic>Exact sciences and technology</topic><topic>Hydraulic constructions</topic><topic>Management</topic><topic>Mathematical optimization</topic><topic>Natural resource management</topic><topic>Objective function</topic><topic>Optimization</topic><topic>programmation dynamique stochastique</topic><topic>programmation stochastique</topic><topic>Q-Learning</topic><topic>Reservoir management</topic><topic>Reservoirs</topic><topic>risk</topic><topic>Risk assessment</topic><topic>Risk reduction</topic><topic>risque</topic><topic>réservoirs d'eau</topic><topic>stochastic dynamic programming</topic><topic>Stochastic models</topic><topic>Stochastic programming</topic><topic>Structural analysis. Stresses</topic><topic>water reservoirs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahootchi, M</creatorcontrib><creatorcontrib>Ponnambalam, K</creatorcontrib><creatorcontrib>Tizhoosh, H.R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Canadian journal of civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahootchi, M</au><au>Ponnambalam, K</au><au>Tizhoosh, H.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of risk-based optimization models for reservoir management</atitle><jtitle>Canadian journal of civil engineering</jtitle><addtitle>Revue canadienne de génie civil</addtitle><date>2010-01</date><risdate>2010</risdate><volume>37</volume><issue>1</issue><spage>112</spage><epage>124</epage><pages>112-124</pages><issn>0315-1468</issn><eissn>1208-6029</eissn><coden>CJCEB8</coden><abstract>Risk minimization in stochastic systems is a challenging problem and this paper compares results of three different techniques in reservoir management. Two-stage stochastic programming (TSP) for maximizing expected benefits is a well-known method, Fletcher and Ponnambalam (FP) and Q-Learning are the two new methods in reservoir management, all of which can include risk minimization in the objective function. The water price uncertainties caused by deregulated markets are considered in addition to random inflows in optimization and simulation is used to compare the results and to develop a risk versus return trade-off curve. One of the contributions of this paper is to consider risk in the Q-Learning algorithm.</abstract><cop>Ottawa, ON</cop><pub>National Research Council of Canada</pub><doi>10.1139/L09-165</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0315-1468
ispartof Canadian journal of civil engineering, 2010-01, Vol.37 (1), p.112-124
issn 0315-1468
1208-6029
language eng
recordid cdi_gale_infotracacademiconefile_A218877420
source Alma/SFX Local Collection
subjects Algorithms
Applied sciences
Buildings. Public works
Comparative analysis
Computation methods. Tables. Charts
Exact sciences and technology
Hydraulic constructions
Management
Mathematical optimization
Natural resource management
Objective function
Optimization
programmation dynamique stochastique
programmation stochastique
Q-Learning
Reservoir management
Reservoirs
risk
Risk assessment
Risk reduction
risque
réservoirs d'eau
stochastic dynamic programming
Stochastic models
Stochastic programming
Structural analysis. Stresses
water reservoirs
title Comparison of risk-based optimization models for reservoir management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_nrcre&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20risk-based%20optimization%20models%20for%20reservoir%20management&rft.jtitle=Canadian%20journal%20of%20civil%20engineering&rft.au=Mahootchi,%20M&rft.date=2010-01&rft.volume=37&rft.issue=1&rft.spage=112&rft.epage=124&rft.pages=112-124&rft.issn=0315-1468&rft.eissn=1208-6029&rft.coden=CJCEB8&rft_id=info:doi/10.1139/L09-165&rft_dat=%3Cgale_nrcre%3EA218877420%3C/gale_nrcre%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213373118&rft_id=info:pmid/&rft_galeid=A218877420&rfr_iscdi=true