Managing the Seed-Corn Supply Chain at Syngenta

Each year, Syngenta Seeds, Inc. produces over 50 seed-corn hybrids and the following year markets over 100 hybrids under the NK brand name. The fact that growing seed corn is a biological process dependent upon local weather and insect conditions during the growing season complicates production plan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interfaces (Providence) 2003-01, Vol.33 (1), p.80-90
Hauptverfasser: Jones, Philip C, Kegler, Greg, Lowe, Timothy J, Traub, Rodney D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 1
container_start_page 80
container_title Interfaces (Providence)
container_volume 33
creator Jones, Philip C
Kegler, Greg
Lowe, Timothy J
Traub, Rodney D
description Each year, Syngenta Seeds, Inc. produces over 50 seed-corn hybrids and the following year markets over 100 hybrids under the NK brand name. The fact that growing seed corn is a biological process dependent upon local weather and insect conditions during the growing season complicates production planning. In addition, customers' experiences with a particular hybrid during a given year strongly influence demand for that hybrid during the next year. To help mitigate some of these yield and demand uncertainties, Syngenta (and other seed companies as well) take advantage of a second growing season for seed corn in South America, which occurs after many of the yield uncertainties and some of the demand uncertainties have been resolved or reduced. To better manage this production-planning process, Syngenta and the University of Iowa developed and implemented a second-chance production-planning model. A trial of the model showed that using it to plan 2000 production would have increased margins by approximately $5 million. Today, Syngenta uses this model to plan production for those varieties that account for 80 percent of total sales volume.
doi_str_mv 10.1287/inte.33.1.80.12718
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_infotracacademiconefile_A105786508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A105786508</galeid><jstor_id>20141224</jstor_id><sourcerecordid>A105786508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-cf2fac1434099f2afe903db6cb4a3b6bb8f0d2eda273be854a4e7abca31551dc3</originalsourceid><addsrcrecordid>eNqNkc-L1DAUx4MoOK7-A4JQPAh7aDcv6Y_0uAy6CiseZhe8hdf0pZOhk45JB5n_3pTKHmQPkkPgvc8nfMOXsffACxCquXF-pkLKAgq1TBpQL9gGKlHnVQU_X7IN563IBXDxmr2J8cA5h1rBht18R4-D80M27ynbEfX5dgo-251Pp_GSbffofIZztrv4gfyMb9kri2Okd3_vK_b45fPD9mt-_-Pu2_b2PjeVFHNurLBooJQlb1sr0FLLZd_VpitRdnXXKct7QT2KRnakqhJLarAzKCEF7o28Yp_Wd09h-nWmOOuji4bGET1N56ilKmslRJXAj_-Ah-kcfMqmBTQAdVtCgvIVGnAk7byd5oAmfYgCjpMn69L4FnjVqLriKvHFM3w6PR2deVYQq2DCFGMgq0_BHTFcNHC9NKSXhrSUGrRaJqmhJH1YpUOcp_BkCA4lCFGmPaz7JUA4xv9783p19m7Y_3ZhTb_ICxxSKU-G_AMrMquC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217116941</pqid></control><display><type>article</type><title>Managing the Seed-Corn Supply Chain at Syngenta</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Jones, Philip C ; Kegler, Greg ; Lowe, Timothy J ; Traub, Rodney D</creator><creatorcontrib>Jones, Philip C ; Kegler, Greg ; Lowe, Timothy J ; Traub, Rodney D</creatorcontrib><description>Each year, Syngenta Seeds, Inc. produces over 50 seed-corn hybrids and the following year markets over 100 hybrids under the NK brand name. The fact that growing seed corn is a biological process dependent upon local weather and insect conditions during the growing season complicates production planning. In addition, customers' experiences with a particular hybrid during a given year strongly influence demand for that hybrid during the next year. To help mitigate some of these yield and demand uncertainties, Syngenta (and other seed companies as well) take advantage of a second growing season for seed corn in South America, which occurs after many of the yield uncertainties and some of the demand uncertainties have been resolved or reduced. To better manage this production-planning process, Syngenta and the University of Iowa developed and implemented a second-chance production-planning model. A trial of the model showed that using it to plan 2000 production would have increased margins by approximately $5 million. Today, Syngenta uses this model to plan production for those varieties that account for 80 percent of total sales volume.</description><identifier>ISSN: 0092-2102</identifier><identifier>ISSN: 2644-0865</identifier><identifier>EISSN: 1526-551X</identifier><identifier>EISSN: 2644-0873</identifier><identifier>DOI: 10.1287/inte.33.1.80.12718</identifier><identifier>CODEN: INFAC4</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Agribusiness ; Agriculture ; Business studies ; Capital costs ; Case studies ; Cereals ; Corn ; Females ; food ; Food production ; Forecasting models ; Genetically altered foods ; Growing seasons ; Hybridity ; Inventories ; Inventory ; Inventory: production ; Management ; Management science ; Modeling ; Operations research ; Planting ; Production costs ; Production planning ; Random variables ; Sales forecasting ; Seasons ; Seed industry ; Seeds ; Uncertainty ; uncertainty. Industries: agriculture</subject><ispartof>Interfaces (Providence), 2003-01, Vol.33 (1), p.80-90</ispartof><rights>Copyright 2003 INFORMS</rights><rights>COPYRIGHT 2003 Institute for Operations Research and the Management Sciences</rights><rights>Copyright Institute for Operations Research and the Management Sciences Jan/Feb 2003</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-cf2fac1434099f2afe903db6cb4a3b6bb8f0d2eda273be854a4e7abca31551dc3</citedby><cites>FETCH-LOGICAL-c532t-cf2fac1434099f2afe903db6cb4a3b6bb8f0d2eda273be854a4e7abca31551dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubsonline.informs.org/doi/epdf/10.1287/inte.33.1.80.12718$$EPDF$$P50$$Ginforms$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/inte.33.1.80.12718$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,3692,27924,27925,58017,58250,62616,62618</link.rule.ids></links><search><creatorcontrib>Jones, Philip C</creatorcontrib><creatorcontrib>Kegler, Greg</creatorcontrib><creatorcontrib>Lowe, Timothy J</creatorcontrib><creatorcontrib>Traub, Rodney D</creatorcontrib><title>Managing the Seed-Corn Supply Chain at Syngenta</title><title>Interfaces (Providence)</title><description>Each year, Syngenta Seeds, Inc. produces over 50 seed-corn hybrids and the following year markets over 100 hybrids under the NK brand name. The fact that growing seed corn is a biological process dependent upon local weather and insect conditions during the growing season complicates production planning. In addition, customers' experiences with a particular hybrid during a given year strongly influence demand for that hybrid during the next year. To help mitigate some of these yield and demand uncertainties, Syngenta (and other seed companies as well) take advantage of a second growing season for seed corn in South America, which occurs after many of the yield uncertainties and some of the demand uncertainties have been resolved or reduced. To better manage this production-planning process, Syngenta and the University of Iowa developed and implemented a second-chance production-planning model. A trial of the model showed that using it to plan 2000 production would have increased margins by approximately $5 million. Today, Syngenta uses this model to plan production for those varieties that account for 80 percent of total sales volume.</description><subject>Agribusiness</subject><subject>Agriculture</subject><subject>Business studies</subject><subject>Capital costs</subject><subject>Case studies</subject><subject>Cereals</subject><subject>Corn</subject><subject>Females</subject><subject>food</subject><subject>Food production</subject><subject>Forecasting models</subject><subject>Genetically altered foods</subject><subject>Growing seasons</subject><subject>Hybridity</subject><subject>Inventories</subject><subject>Inventory</subject><subject>Inventory: production</subject><subject>Management</subject><subject>Management science</subject><subject>Modeling</subject><subject>Operations research</subject><subject>Planting</subject><subject>Production costs</subject><subject>Production planning</subject><subject>Random variables</subject><subject>Sales forecasting</subject><subject>Seasons</subject><subject>Seed industry</subject><subject>Seeds</subject><subject>Uncertainty</subject><subject>uncertainty. Industries: agriculture</subject><issn>0092-2102</issn><issn>2644-0865</issn><issn>1526-551X</issn><issn>2644-0873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc-L1DAUx4MoOK7-A4JQPAh7aDcv6Y_0uAy6CiseZhe8hdf0pZOhk45JB5n_3pTKHmQPkkPgvc8nfMOXsffACxCquXF-pkLKAgq1TBpQL9gGKlHnVQU_X7IN563IBXDxmr2J8cA5h1rBht18R4-D80M27ynbEfX5dgo-251Pp_GSbffofIZztrv4gfyMb9kri2Okd3_vK_b45fPD9mt-_-Pu2_b2PjeVFHNurLBooJQlb1sr0FLLZd_VpitRdnXXKct7QT2KRnakqhJLarAzKCEF7o28Yp_Wd09h-nWmOOuji4bGET1N56ilKmslRJXAj_-Ah-kcfMqmBTQAdVtCgvIVGnAk7byd5oAmfYgCjpMn69L4FnjVqLriKvHFM3w6PR2deVYQq2DCFGMgq0_BHTFcNHC9NKSXhrSUGrRaJqmhJH1YpUOcp_BkCA4lCFGmPaz7JUA4xv9783p19m7Y_3ZhTb_ICxxSKU-G_AMrMquC</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Jones, Philip C</creator><creator>Kegler, Greg</creator><creator>Lowe, Timothy J</creator><creator>Traub, Rodney D</creator><general>INFORMS</general><general>The Institute for Operations Research and the Management Sciences (INFORMS)</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0N</scope><scope>M0T</scope><scope>M2P</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20030101</creationdate><title>Managing the Seed-Corn Supply Chain at Syngenta</title><author>Jones, Philip C ; Kegler, Greg ; Lowe, Timothy J ; Traub, Rodney D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-cf2fac1434099f2afe903db6cb4a3b6bb8f0d2eda273be854a4e7abca31551dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agribusiness</topic><topic>Agriculture</topic><topic>Business studies</topic><topic>Capital costs</topic><topic>Case studies</topic><topic>Cereals</topic><topic>Corn</topic><topic>Females</topic><topic>food</topic><topic>Food production</topic><topic>Forecasting models</topic><topic>Genetically altered foods</topic><topic>Growing seasons</topic><topic>Hybridity</topic><topic>Inventories</topic><topic>Inventory</topic><topic>Inventory: production</topic><topic>Management</topic><topic>Management science</topic><topic>Modeling</topic><topic>Operations research</topic><topic>Planting</topic><topic>Production costs</topic><topic>Production planning</topic><topic>Random variables</topic><topic>Sales forecasting</topic><topic>Seasons</topic><topic>Seed industry</topic><topic>Seeds</topic><topic>Uncertainty</topic><topic>uncertainty. Industries: agriculture</topic><toplevel>online_resources</toplevel><creatorcontrib>Jones, Philip C</creatorcontrib><creatorcontrib>Kegler, Greg</creatorcontrib><creatorcontrib>Lowe, Timothy J</creatorcontrib><creatorcontrib>Traub, Rodney D</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Healthcare Administration Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Interfaces (Providence)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Philip C</au><au>Kegler, Greg</au><au>Lowe, Timothy J</au><au>Traub, Rodney D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Managing the Seed-Corn Supply Chain at Syngenta</atitle><jtitle>Interfaces (Providence)</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>33</volume><issue>1</issue><spage>80</spage><epage>90</epage><pages>80-90</pages><issn>0092-2102</issn><issn>2644-0865</issn><eissn>1526-551X</eissn><eissn>2644-0873</eissn><coden>INFAC4</coden><abstract>Each year, Syngenta Seeds, Inc. produces over 50 seed-corn hybrids and the following year markets over 100 hybrids under the NK brand name. The fact that growing seed corn is a biological process dependent upon local weather and insect conditions during the growing season complicates production planning. In addition, customers' experiences with a particular hybrid during a given year strongly influence demand for that hybrid during the next year. To help mitigate some of these yield and demand uncertainties, Syngenta (and other seed companies as well) take advantage of a second growing season for seed corn in South America, which occurs after many of the yield uncertainties and some of the demand uncertainties have been resolved or reduced. To better manage this production-planning process, Syngenta and the University of Iowa developed and implemented a second-chance production-planning model. A trial of the model showed that using it to plan 2000 production would have increased margins by approximately $5 million. Today, Syngenta uses this model to plan production for those varieties that account for 80 percent of total sales volume.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/inte.33.1.80.12718</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-2102
ispartof Interfaces (Providence), 2003-01, Vol.33 (1), p.80-90
issn 0092-2102
2644-0865
1526-551X
2644-0873
language eng
recordid cdi_gale_infotracacademiconefile_A105786508
source INFORMS PubsOnLine; Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Agribusiness
Agriculture
Business studies
Capital costs
Case studies
Cereals
Corn
Females
food
Food production
Forecasting models
Genetically altered foods
Growing seasons
Hybridity
Inventories
Inventory
Inventory: production
Management
Management science
Modeling
Operations research
Planting
Production costs
Production planning
Random variables
Sales forecasting
Seasons
Seed industry
Seeds
Uncertainty
uncertainty. Industries: agriculture
title Managing the Seed-Corn Supply Chain at Syngenta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Managing%20the%20Seed-Corn%20Supply%20Chain%20at%20Syngenta&rft.jtitle=Interfaces%20(Providence)&rft.au=Jones,%20Philip%20C&rft.date=2003-01-01&rft.volume=33&rft.issue=1&rft.spage=80&rft.epage=90&rft.pages=80-90&rft.issn=0092-2102&rft.eissn=1526-551X&rft.coden=INFAC4&rft_id=info:doi/10.1287/inte.33.1.80.12718&rft_dat=%3Cgale_proqu%3EA105786508%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217116941&rft_id=info:pmid/&rft_galeid=A105786508&rft_jstor_id=20141224&rfr_iscdi=true