Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0

When studying the vehicle routing problem, especially for on-time arrivals, the determination of travel time plays a decisive role in the optimization of logistics companies. Traffic Internet of Things (IoT) connects ubiquitous devices and collects data from various channels like traffic cameras, ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production economics 2021-08, Vol.238, p.108157, Article 108157
Hauptverfasser: Chen, Yi-Ting, Sun, Edward W., Chang, Ming-Feng, Lin, Yi-Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When studying the vehicle routing problem, especially for on-time arrivals, the determination of travel time plays a decisive role in the optimization of logistics companies. Traffic Internet of Things (IoT) connects ubiquitous devices and collects data from various channels like traffic cameras, vehicle detectors, GPS, sensors, etc. that can be used to analyze real-time traffic status and eventually increase the efficiency of logistics management for Logistics 4.0. However, big IoT data contain joint features that interact non-linearly and complicatedly, thus increasing the stochastic nature and difficulty of determining travel time on real-time basis. This research proposes a novel method (named the gradient boosting partitioned regression tree model) to forecast travel time based on big data collected from the industrial IoT infrastructure. The proposed method separates the global regression tree model based on the gradient boosting decision tree into several partitions to capture the time-varying features simultaneously – that is, to subdivide the non-linearity into fragments and to characterize the feature interactions in a manageable way with recursive partitions. We illustrate several analytical properties with manageable advantages in terms of big data analytics of the proposed method and apply it to real traffic IoT data. Findings of this research show that the proposed method performs successfully at enhancing the predictive accuracy of travel time after empirically comparing it with other computational methods.
ISSN:0925-5273
1873-7579
DOI:10.1016/j.ijpe.2021.108157