Measuring the Connectedness of the Global Economy

We develop a technique to exploit forecast error variance decompositions to evaluate the macroeconomic connectedness embedded in any multi-country macroeconomic model with an approximate vector autoregressive (VAR) representation. We apply our technique to a large global VAR model covering 25 countr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2021-04, Vol.37 (2), p.899-919
Hauptverfasser: Greenwood-Nimmo, Matthew, Nguyen, Viet Hoang, Shin, Yongcheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 919
container_issue 2
container_start_page 899
container_title International journal of forecasting
container_volume 37
creator Greenwood-Nimmo, Matthew
Nguyen, Viet Hoang
Shin, Yongcheol
description We develop a technique to exploit forecast error variance decompositions to evaluate the macroeconomic connectedness embedded in any multi-country macroeconomic model with an approximate vector autoregressive (VAR) representation. We apply our technique to a large global VAR model covering 25 countries and derive vivid representations of macroeconomic connectedness. We find that the US exerts a dominant influence in the global economy and that Brazil, China, and the Eurozone are also globally significant. Recursive analysis over the period of the global financial crisis shows that shocks to global equity markets are transmitted rapidly and forcefully to real trade flows and real GDP.
doi_str_mv 10.1016/j.ijforecast.2020.10.003
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_incontextgauss__A652857484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A652857484</galeid><els_id>S0169207020301576</els_id><sourcerecordid>A652857484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-2fb585e9fc5dd4206ffe417574e7ead7a939dc66d6b9a19be1f4b3afb2a85bdd3</originalsourceid><addsrcrecordid>eNqFkMFOwzAQRC0EEqXwDzlxS7CdxHaOpSoFqYgLnC3HXgdHaYxiF9G_x6FIHDmtNDszq30IZQQXBBN21xeut34CrUIsKKazXGBcnqEFEZzmgmJ8jhbJ2uQUc3yJrkLoMcY1J2SByDOocJjc2GXxHbK1H0fQEcwIIWTe_ojbwbdqyDbaj35_vEYXVg0Bbn7nEr09bF7Xj_nuZfu0Xu1yXbEq5tS2taihsbo2pqKYWQsV4TWvgIMyXDVlYzRjhrWNIk0LxFZtqWxLlahbY8oluj31dmoA6cZ0PcJX7NQhBClXrKYilYkqGcXJqCcfwgRWfkxur6ajJFjOjGQv_xjJmdG8SYxS9P4UhfTIp4NJBu1g1GBcckdpvPu_5BvPfXUl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Measuring the Connectedness of the Global Economy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Greenwood-Nimmo, Matthew ; Nguyen, Viet Hoang ; Shin, Yongcheol</creator><creatorcontrib>Greenwood-Nimmo, Matthew ; Nguyen, Viet Hoang ; Shin, Yongcheol</creatorcontrib><description>We develop a technique to exploit forecast error variance decompositions to evaluate the macroeconomic connectedness embedded in any multi-country macroeconomic model with an approximate vector autoregressive (VAR) representation. We apply our technique to a large global VAR model covering 25 countries and derive vivid representations of macroeconomic connectedness. We find that the US exerts a dominant influence in the global economy and that Brazil, China, and the Eurozone are also globally significant. Recursive analysis over the period of the global financial crisis shows that shocks to global equity markets are transmitted rapidly and forcefully to real trade flows and real GDP.</description><identifier>ISSN: 0169-2070</identifier><identifier>EISSN: 1872-8200</identifier><identifier>DOI: 10.1016/j.ijforecast.2020.10.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analysis ; Conferences and conventions ; Economic aspects ; Forecast error variance decomposition ; Generalised Connectedness Measures (GCMs) ; Global economy ; International linkages ; Macroeconomic connectedness ; Macroeconomics ; Measurement ; Network analysis ; Social aspects</subject><ispartof>International journal of forecasting, 2021-04, Vol.37 (2), p.899-919</ispartof><rights>2020 International Institute of Forecasters</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-2fb585e9fc5dd4206ffe417574e7ead7a939dc66d6b9a19be1f4b3afb2a85bdd3</citedby><cites>FETCH-LOGICAL-c464t-2fb585e9fc5dd4206ffe417574e7ead7a939dc66d6b9a19be1f4b3afb2a85bdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijforecast.2020.10.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Greenwood-Nimmo, Matthew</creatorcontrib><creatorcontrib>Nguyen, Viet Hoang</creatorcontrib><creatorcontrib>Shin, Yongcheol</creatorcontrib><title>Measuring the Connectedness of the Global Economy</title><title>International journal of forecasting</title><description>We develop a technique to exploit forecast error variance decompositions to evaluate the macroeconomic connectedness embedded in any multi-country macroeconomic model with an approximate vector autoregressive (VAR) representation. We apply our technique to a large global VAR model covering 25 countries and derive vivid representations of macroeconomic connectedness. We find that the US exerts a dominant influence in the global economy and that Brazil, China, and the Eurozone are also globally significant. Recursive analysis over the period of the global financial crisis shows that shocks to global equity markets are transmitted rapidly and forcefully to real trade flows and real GDP.</description><subject>Analysis</subject><subject>Conferences and conventions</subject><subject>Economic aspects</subject><subject>Forecast error variance decomposition</subject><subject>Generalised Connectedness Measures (GCMs)</subject><subject>Global economy</subject><subject>International linkages</subject><subject>Macroeconomic connectedness</subject><subject>Macroeconomics</subject><subject>Measurement</subject><subject>Network analysis</subject><subject>Social aspects</subject><issn>0169-2070</issn><issn>1872-8200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAQRC0EEqXwDzlxS7CdxHaOpSoFqYgLnC3HXgdHaYxiF9G_x6FIHDmtNDszq30IZQQXBBN21xeut34CrUIsKKazXGBcnqEFEZzmgmJ8jhbJ2uQUc3yJrkLoMcY1J2SByDOocJjc2GXxHbK1H0fQEcwIIWTe_ojbwbdqyDbaj35_vEYXVg0Bbn7nEr09bF7Xj_nuZfu0Xu1yXbEq5tS2taihsbo2pqKYWQsV4TWvgIMyXDVlYzRjhrWNIk0LxFZtqWxLlahbY8oluj31dmoA6cZ0PcJX7NQhBClXrKYilYkqGcXJqCcfwgRWfkxur6ajJFjOjGQv_xjJmdG8SYxS9P4UhfTIp4NJBu1g1GBcckdpvPu_5BvPfXUl</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Greenwood-Nimmo, Matthew</creator><creator>Nguyen, Viet Hoang</creator><creator>Shin, Yongcheol</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210401</creationdate><title>Measuring the Connectedness of the Global Economy</title><author>Greenwood-Nimmo, Matthew ; Nguyen, Viet Hoang ; Shin, Yongcheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-2fb585e9fc5dd4206ffe417574e7ead7a939dc66d6b9a19be1f4b3afb2a85bdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Conferences and conventions</topic><topic>Economic aspects</topic><topic>Forecast error variance decomposition</topic><topic>Generalised Connectedness Measures (GCMs)</topic><topic>Global economy</topic><topic>International linkages</topic><topic>Macroeconomic connectedness</topic><topic>Macroeconomics</topic><topic>Measurement</topic><topic>Network analysis</topic><topic>Social aspects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greenwood-Nimmo, Matthew</creatorcontrib><creatorcontrib>Nguyen, Viet Hoang</creatorcontrib><creatorcontrib>Shin, Yongcheol</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of forecasting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greenwood-Nimmo, Matthew</au><au>Nguyen, Viet Hoang</au><au>Shin, Yongcheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Connectedness of the Global Economy</atitle><jtitle>International journal of forecasting</jtitle><date>2021-04-01</date><risdate>2021</risdate><volume>37</volume><issue>2</issue><spage>899</spage><epage>919</epage><pages>899-919</pages><issn>0169-2070</issn><eissn>1872-8200</eissn><abstract>We develop a technique to exploit forecast error variance decompositions to evaluate the macroeconomic connectedness embedded in any multi-country macroeconomic model with an approximate vector autoregressive (VAR) representation. We apply our technique to a large global VAR model covering 25 countries and derive vivid representations of macroeconomic connectedness. We find that the US exerts a dominant influence in the global economy and that Brazil, China, and the Eurozone are also globally significant. Recursive analysis over the period of the global financial crisis shows that shocks to global equity markets are transmitted rapidly and forcefully to real trade flows and real GDP.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.ijforecast.2020.10.003</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-2070
ispartof International journal of forecasting, 2021-04, Vol.37 (2), p.899-919
issn 0169-2070
1872-8200
language eng
recordid cdi_gale_incontextgauss__A652857484
source Access via ScienceDirect (Elsevier)
subjects Analysis
Conferences and conventions
Economic aspects
Forecast error variance decomposition
Generalised Connectedness Measures (GCMs)
Global economy
International linkages
Macroeconomic connectedness
Macroeconomics
Measurement
Network analysis
Social aspects
title Measuring the Connectedness of the Global Economy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A01%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Connectedness%20of%20the%20Global%20Economy&rft.jtitle=International%20journal%20of%20forecasting&rft.au=Greenwood-Nimmo,%20Matthew&rft.date=2021-04-01&rft.volume=37&rft.issue=2&rft.spage=899&rft.epage=919&rft.pages=899-919&rft.issn=0169-2070&rft.eissn=1872-8200&rft_id=info:doi/10.1016/j.ijforecast.2020.10.003&rft_dat=%3Cgale_cross%3EA652857484%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A652857484&rft_els_id=S0169207020301576&rfr_iscdi=true