Predictive Analytics with Strategically Missing Data
We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable...
Gespeichert in:
Veröffentlicht in: | INFORMS journal on computing 2020-01, Vol.32 (4), p.1143-1156, Article ijoc.2019.0947 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1156 |
---|---|
container_issue | 4 |
container_start_page | 1143 |
container_title | INFORMS journal on computing |
container_volume | 32 |
creator | Zhang, Juheng Liu, Xiaoping Li, Xiao-Bai |
description | We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach. |
doi_str_mv | 10.1287/ijoc.2019.0947 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_incontextgauss__A644511243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A644511243</galeid><sourcerecordid>A644511243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6ab5b6512925216b040f8aea53721ee1c67395f64229088ef311c0845689d4553</originalsourceid><addsrcrecordid>eNqFkcFLHDEUxoO0qFWvngcKpZfZ5r1JMslFWLRWwVJBPYdsNjNmmZ1okrHd_94sK0J76ek9eL_v4-N9hJwCnQHK9ptfBTtDCmpGFWv3yCFwFDXnKD-UnSqoleTigHxKaUUpZQ1T--SgYVwIRvGQsNvolt5m_-Kq-WiGTfY2Vb99fqzucjTZ9d6aYdhUP31KfuyrC5PNMfnYmSG5k7d5RB4uv9-fX9U3v35cn89vasuUyLUwC74QHFAhRxALymgnjTO8aRGcAyvaRvFOMERFpXRdA2CpLNmkWjLOmyNytvN9mhZrt7RuLJEG_RT92sSNDsbrvy-jf9R9eNHFQ0mUxeDrm0EMz5NLWa99sm4YzOjClDTyVigQiFjQz_-gqzDF8pFCMcGZBNlCob7sqN4MTvvRhjG7P7k3U0pazwVjHABZU8DZDrQxpBRd954aqN42p7fN6W1zettcEdQ7gR-7ENfpf_wrssKXEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465481871</pqid></control><display><type>article</type><title>Predictive Analytics with Strategically Missing Data</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><creator>Zhang, Juheng ; Liu, Xiaoping ; Li, Xiao-Bai</creator><creatorcontrib>Zhang, Juheng ; Liu, Xiaoping ; Li, Xiao-Bai</creatorcontrib><description>We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.2019.0947</identifier><identifier>PMID: 34566402</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Applications ; business analytics ; College admissions ; data manipulation ; Decision making ; Financial disclosure ; Financial reporting ; Incentives ; information disclosure ; Marketing ; Missing data ; Predictive analytics ; Regression analysis ; Regression models ; strategic learning ; Support vector machines ; support vector regression</subject><ispartof>INFORMS journal on computing, 2020-01, Vol.32 (4), p.1143-1156, Article ijoc.2019.0947</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Fall 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6ab5b6512925216b040f8aea53721ee1c67395f64229088ef311c0845689d4553</citedby><cites>FETCH-LOGICAL-c496t-6ab5b6512925216b040f8aea53721ee1c67395f64229088ef311c0845689d4553</cites><orcidid>0000-0001-8009-8439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.2019.0947$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>230,314,776,780,881,3678,27903,27904,62592</link.rule.ids></links><search><creatorcontrib>Zhang, Juheng</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Li, Xiao-Bai</creatorcontrib><title>Predictive Analytics with Strategically Missing Data</title><title>INFORMS journal on computing</title><description>We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.</description><subject>Applications</subject><subject>business analytics</subject><subject>College admissions</subject><subject>data manipulation</subject><subject>Decision making</subject><subject>Financial disclosure</subject><subject>Financial reporting</subject><subject>Incentives</subject><subject>information disclosure</subject><subject>Marketing</subject><subject>Missing data</subject><subject>Predictive analytics</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>strategic learning</subject><subject>Support vector machines</subject><subject>support vector regression</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkcFLHDEUxoO0qFWvngcKpZfZ5r1JMslFWLRWwVJBPYdsNjNmmZ1okrHd_94sK0J76ek9eL_v4-N9hJwCnQHK9ptfBTtDCmpGFWv3yCFwFDXnKD-UnSqoleTigHxKaUUpZQ1T--SgYVwIRvGQsNvolt5m_-Kq-WiGTfY2Vb99fqzucjTZ9d6aYdhUP31KfuyrC5PNMfnYmSG5k7d5RB4uv9-fX9U3v35cn89vasuUyLUwC74QHFAhRxALymgnjTO8aRGcAyvaRvFOMERFpXRdA2CpLNmkWjLOmyNytvN9mhZrt7RuLJEG_RT92sSNDsbrvy-jf9R9eNHFQ0mUxeDrm0EMz5NLWa99sm4YzOjClDTyVigQiFjQz_-gqzDF8pFCMcGZBNlCob7sqN4MTvvRhjG7P7k3U0pazwVjHABZU8DZDrQxpBRd954aqN42p7fN6W1zettcEdQ7gR-7ENfpf_wrssKXEQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Juheng</creator><creator>Liu, Xiaoping</creator><creator>Li, Xiao-Bai</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8009-8439</orcidid></search><sort><creationdate>20200101</creationdate><title>Predictive Analytics with Strategically Missing Data</title><author>Zhang, Juheng ; Liu, Xiaoping ; Li, Xiao-Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6ab5b6512925216b040f8aea53721ee1c67395f64229088ef311c0845689d4553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications</topic><topic>business analytics</topic><topic>College admissions</topic><topic>data manipulation</topic><topic>Decision making</topic><topic>Financial disclosure</topic><topic>Financial reporting</topic><topic>Incentives</topic><topic>information disclosure</topic><topic>Marketing</topic><topic>Missing data</topic><topic>Predictive analytics</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>strategic learning</topic><topic>Support vector machines</topic><topic>support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Juheng</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Li, Xiao-Bai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Juheng</au><au>Liu, Xiaoping</au><au>Li, Xiao-Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Analytics with Strategically Missing Data</atitle><jtitle>INFORMS journal on computing</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><spage>1143</spage><epage>1156</epage><pages>1143-1156</pages><artnum>ijoc.2019.0947</artnum><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><pmid>34566402</pmid><doi>10.1287/ijoc.2019.0947</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8009-8439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1091-9856 |
ispartof | INFORMS journal on computing, 2020-01, Vol.32 (4), p.1143-1156, Article ijoc.2019.0947 |
issn | 1091-9856 1526-5528 1091-9856 |
language | eng |
recordid | cdi_gale_incontextgauss__A644511243 |
source | INFORMS PubsOnLine; Business Source Complete |
subjects | Applications business analytics College admissions data manipulation Decision making Financial disclosure Financial reporting Incentives information disclosure Marketing Missing data Predictive analytics Regression analysis Regression models strategic learning Support vector machines support vector regression |
title | Predictive Analytics with Strategically Missing Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Analytics%20with%20Strategically%20Missing%20Data&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Zhang,%20Juheng&rft.date=2020-01-01&rft.volume=32&rft.issue=4&rft.spage=1143&rft.epage=1156&rft.pages=1143-1156&rft.artnum=ijoc.2019.0947&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.2019.0947&rft_dat=%3Cgale_proqu%3EA644511243%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465481871&rft_id=info:pmid/34566402&rft_galeid=A644511243&rfr_iscdi=true |