Predictive Analytics with Strategically Missing Data

We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:INFORMS journal on computing 2020-01, Vol.32 (4), p.1143-1156, Article ijoc.2019.0947
Hauptverfasser: Zhang, Juheng, Liu, Xiaoping, Li, Xiao-Bai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1156
container_issue 4
container_start_page 1143
container_title INFORMS journal on computing
container_volume 32
creator Zhang, Juheng
Liu, Xiaoping
Li, Xiao-Bai
description We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.
doi_str_mv 10.1287/ijoc.2019.0947
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_gale_incontextgauss__A644511243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A644511243</galeid><sourcerecordid>A644511243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-6ab5b6512925216b040f8aea53721ee1c67395f64229088ef311c0845689d4553</originalsourceid><addsrcrecordid>eNqFkcFLHDEUxoO0qFWvngcKpZfZ5r1JMslFWLRWwVJBPYdsNjNmmZ1okrHd_94sK0J76ek9eL_v4-N9hJwCnQHK9ptfBTtDCmpGFWv3yCFwFDXnKD-UnSqoleTigHxKaUUpZQ1T--SgYVwIRvGQsNvolt5m_-Kq-WiGTfY2Vb99fqzucjTZ9d6aYdhUP31KfuyrC5PNMfnYmSG5k7d5RB4uv9-fX9U3v35cn89vasuUyLUwC74QHFAhRxALymgnjTO8aRGcAyvaRvFOMERFpXRdA2CpLNmkWjLOmyNytvN9mhZrt7RuLJEG_RT92sSNDsbrvy-jf9R9eNHFQ0mUxeDrm0EMz5NLWa99sm4YzOjClDTyVigQiFjQz_-gqzDF8pFCMcGZBNlCob7sqN4MTvvRhjG7P7k3U0pazwVjHABZU8DZDrQxpBRd954aqN42p7fN6W1zettcEdQ7gR-7ENfpf_wrssKXEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465481871</pqid></control><display><type>article</type><title>Predictive Analytics with Strategically Missing Data</title><source>INFORMS PubsOnLine</source><source>Business Source Complete</source><creator>Zhang, Juheng ; Liu, Xiaoping ; Li, Xiao-Bai</creator><creatorcontrib>Zhang, Juheng ; Liu, Xiaoping ; Li, Xiao-Bai</creatorcontrib><description>We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.</description><identifier>ISSN: 1091-9856</identifier><identifier>EISSN: 1526-5528</identifier><identifier>EISSN: 1091-9856</identifier><identifier>DOI: 10.1287/ijoc.2019.0947</identifier><identifier>PMID: 34566402</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>Applications ; business analytics ; College admissions ; data manipulation ; Decision making ; Financial disclosure ; Financial reporting ; Incentives ; information disclosure ; Marketing ; Missing data ; Predictive analytics ; Regression analysis ; Regression models ; strategic learning ; Support vector machines ; support vector regression</subject><ispartof>INFORMS journal on computing, 2020-01, Vol.32 (4), p.1143-1156, Article ijoc.2019.0947</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Fall 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-6ab5b6512925216b040f8aea53721ee1c67395f64229088ef311c0845689d4553</citedby><cites>FETCH-LOGICAL-c496t-6ab5b6512925216b040f8aea53721ee1c67395f64229088ef311c0845689d4553</cites><orcidid>0000-0001-8009-8439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/ijoc.2019.0947$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>230,314,776,780,881,3678,27903,27904,62592</link.rule.ids></links><search><creatorcontrib>Zhang, Juheng</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Li, Xiao-Bai</creatorcontrib><title>Predictive Analytics with Strategically Missing Data</title><title>INFORMS journal on computing</title><description>We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.</description><subject>Applications</subject><subject>business analytics</subject><subject>College admissions</subject><subject>data manipulation</subject><subject>Decision making</subject><subject>Financial disclosure</subject><subject>Financial reporting</subject><subject>Incentives</subject><subject>information disclosure</subject><subject>Marketing</subject><subject>Missing data</subject><subject>Predictive analytics</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>strategic learning</subject><subject>Support vector machines</subject><subject>support vector regression</subject><issn>1091-9856</issn><issn>1526-5528</issn><issn>1091-9856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkcFLHDEUxoO0qFWvngcKpZfZ5r1JMslFWLRWwVJBPYdsNjNmmZ1okrHd_94sK0J76ek9eL_v4-N9hJwCnQHK9ptfBTtDCmpGFWv3yCFwFDXnKD-UnSqoleTigHxKaUUpZQ1T--SgYVwIRvGQsNvolt5m_-Kq-WiGTfY2Vb99fqzucjTZ9d6aYdhUP31KfuyrC5PNMfnYmSG5k7d5RB4uv9-fX9U3v35cn89vasuUyLUwC74QHFAhRxALymgnjTO8aRGcAyvaRvFOMERFpXRdA2CpLNmkWjLOmyNytvN9mhZrt7RuLJEG_RT92sSNDsbrvy-jf9R9eNHFQ0mUxeDrm0EMz5NLWa99sm4YzOjClDTyVigQiFjQz_-gqzDF8pFCMcGZBNlCob7sqN4MTvvRhjG7P7k3U0pazwVjHABZU8DZDrQxpBRd954aqN42p7fN6W1zettcEdQ7gR-7ENfpf_wrssKXEQ</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Juheng</creator><creator>Liu, Xiaoping</creator><creator>Li, Xiao-Bai</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8009-8439</orcidid></search><sort><creationdate>20200101</creationdate><title>Predictive Analytics with Strategically Missing Data</title><author>Zhang, Juheng ; Liu, Xiaoping ; Li, Xiao-Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-6ab5b6512925216b040f8aea53721ee1c67395f64229088ef311c0845689d4553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications</topic><topic>business analytics</topic><topic>College admissions</topic><topic>data manipulation</topic><topic>Decision making</topic><topic>Financial disclosure</topic><topic>Financial reporting</topic><topic>Incentives</topic><topic>information disclosure</topic><topic>Marketing</topic><topic>Missing data</topic><topic>Predictive analytics</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>strategic learning</topic><topic>Support vector machines</topic><topic>support vector regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Juheng</creatorcontrib><creatorcontrib>Liu, Xiaoping</creatorcontrib><creatorcontrib>Li, Xiao-Bai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>INFORMS journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Juheng</au><au>Liu, Xiaoping</au><au>Li, Xiao-Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Analytics with Strategically Missing Data</atitle><jtitle>INFORMS journal on computing</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>32</volume><issue>4</issue><spage>1143</spage><epage>1156</epage><pages>1143-1156</pages><artnum>ijoc.2019.0947</artnum><issn>1091-9856</issn><eissn>1526-5528</eissn><eissn>1091-9856</eissn><abstract>We study strategically missing data problems in predictive analytics with regression. In many real-world situations, such as financial reporting, college admission, job application, and marketing advertisement, data providers often conceal certain information on purpose in order to gain a favorable outcome. It is important for the decision-maker to have a mechanism to deal with such strategic behaviors. We propose a novel approach to handle strategically missing data in regression prediction. The proposed method derives imputation values of strategically missing data based on the Support Vector Regression models. It provides incentives for the data providers to disclose their true information. We show that with the proposed method imputation errors for the missing values are minimized under some reasonable conditions. An experimental study on real-world data demonstrates the effectiveness of the proposed approach.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><pmid>34566402</pmid><doi>10.1287/ijoc.2019.0947</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8009-8439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1091-9856
ispartof INFORMS journal on computing, 2020-01, Vol.32 (4), p.1143-1156, Article ijoc.2019.0947
issn 1091-9856
1526-5528
1091-9856
language eng
recordid cdi_gale_incontextgauss__A644511243
source INFORMS PubsOnLine; Business Source Complete
subjects Applications
business analytics
College admissions
data manipulation
Decision making
Financial disclosure
Financial reporting
Incentives
information disclosure
Marketing
Missing data
Predictive analytics
Regression analysis
Regression models
strategic learning
Support vector machines
support vector regression
title Predictive Analytics with Strategically Missing Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Analytics%20with%20Strategically%20Missing%20Data&rft.jtitle=INFORMS%20journal%20on%20computing&rft.au=Zhang,%20Juheng&rft.date=2020-01-01&rft.volume=32&rft.issue=4&rft.spage=1143&rft.epage=1156&rft.pages=1143-1156&rft.artnum=ijoc.2019.0947&rft.issn=1091-9856&rft.eissn=1526-5528&rft_id=info:doi/10.1287/ijoc.2019.0947&rft_dat=%3Cgale_proqu%3EA644511243%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465481871&rft_id=info:pmid/34566402&rft_galeid=A644511243&rfr_iscdi=true